精英家教网 > 高中数学 > 题目详情
18.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,与x轴平行的直线交Γ于B,C两点,记$\overrightarrow{AB}$•$\overrightarrow{AC}$=m,若Γ的离心率为$\sqrt{2}$,则m的取值的集合是{0}.

分析 利用Γ的离心率为$\sqrt{2}$,可得a=b,双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1化为x2-y2=a2,利用向量的数量积公式,即可得出结论.

解答 解:∵Γ的离心率为$\sqrt{2}$,
∴a=b,∴双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1化为x2-y2=a2
设B(-x,y),C(x,y),A(a,0),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=(-x-a,y)•(x-a,y)=a2-x2+y2=0,
∴m=0.
故答案为:{0}.

点评 本题考查双曲线的方程与性质,考查向量的数量积公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.2012年初,甲?乙两外商在湖北各自兴办了一家大型独资企业.2015年初在经济指标对比时发现,这两家企业在2012年和2014年缴纳的地税均相同,其间每年缴纳的地税按各自的规律增长;企业甲年增长数相同,而企业乙年增长率相同.则2015年企业缴纳地税的情况是(  )
A.甲多B.乙多C.甲乙一样多D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,则使得f(x)>f(2x-1)成立的取值范围是(  )
A.(-∞,$\frac{1}{3}$)∪(1,+∞)B.($\frac{1}{3}$,1)C.($-\frac{1}{3},\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$,)$∪(\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$•$\overrightarrow{b}$=10,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,则|$\overrightarrow{b}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某造纸厂拟建一座平面图形为矩形且面积为162 平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400 元/米,中间两道隔墙建造单价为248 元/米,池底建造单价为80 元/米2,水池所有墙的厚度忽略不计.
(1 )试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2 )若由于地形限制,该池的长和宽都不能超过16 米,试设计污水池的长和宽,使总造价最低.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C是C1上半圆:x2+y2=m2(y≥0,m>0)与部分圆C2:x2+(y+1)2=n2(y≤0,n<0)连接而成的,C1,C2交于x轴上的公共点为A,B(A在B的左侧),曲线C与y轴交于D、E两点,若|DE|=2+$\sqrt{2}$.
(1)求m、n的值:
(2)过B作直线MN与C1,C2交于和A,B不同的两点M,N,问是否存在M、N,使AM⊥AN?若存在,求出直线MN方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x∈{0,2,x2),则实数x的值为(  )
A.1B.2C.0或1或2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则f(x)<0的解是(  )
A.(-3,0)∪(1,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线过(-1,3)且在x,y轴上的截距的绝对值相等,则直线方程为3x+y=0、x-y+4=0,或x+y-2=0.

查看答案和解析>>

同步练习册答案