精英家教网 > 高中数学 > 题目详情

数列满足,记数列前n项的和为Sn,若对任意的 恒成立,则正整数的最小值为              (     )

  A.10             B.9              C.8              D.7

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}和数列{bn}(n∈N*)由下列条件确定:
(1)a1<0,b1>0;
(2)当k≥2时,ak与bk满足如下条件:当
ak-1+bk-1
2
≥0时,ak=ak-1,bk=
ak-1+bk-1
2
;当
ak-1+bk-1
2
<0时,ak=
ak-1+bk-1
2
,bk=bk-1
解答下列问题:
(Ⅰ)证明数列{ak-bk}是等比数列;
(Ⅱ)记数列{n(bk-an)}的前n项和为Sn,若已知当a>1时,
lim
n→∞
n
an
=0,求
lim
n→∞
Sn

(Ⅲ)m(n≥2)是满足b1>b2>…>bn的最大整数时,用a1,b1表示n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{log4(an-1)}(n∈N*),且a1=5,a3=65,函数f(x)=x2-4x+4,设数列{bn}的前n项和为Sn=f(n),
(1)求数列{an}与数列{bn}的通项公式;
(2)记数列cn=(an-1)•bn,且{cn}的前n项和为Tn,求Tn
(3)设各项均不为零的数列{dn}中,所有满足dk•dk+1<0的整数k的个数称为这个数列的异号数,令dn=
bn-4bn
(n∈N*),试问数列{dn}是否存在异号数,若存在,请求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省六校高三上学期11月联考理科数学 题型:解答题

(本小题满分14分)等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.

 

第一列

第二列

第三列

第一行

3

2

10

第二行

6

4

14

第三行

9

8

18

(Ⅰ)求数列的通项公式;   

(Ⅱ)若数列满足 ,记数列的前n项和为,证明

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市富阳二中高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知点是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足:.记数列前n项和为Tn
(1)求数列an和bn的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案