精英家教网 > 高中数学 > 题目详情

已知函数f(x)是定义在[-2,2]上的奇函数,当x∈[-2,0)时,数学公式(t为常数).
(1)求函数f(x)的解析式;
(2)当t∈[2,6]时,求f(x)在[-2,0]上的最小值,及取得最小值时的x,并猜想f(x)在[0,2]上的单调递增区间(不必证明);
(3)当t≥9时,证明:函数y=f(x)的图象上至少有一个点落在直线y=14上.

解:(1)x∈(0,2]时,-x∈[-2,0),则
∵函数f(x)是定义在[-2,2]上的奇函数,即f(-x)=-f(x),
,即,又可知f(0)=0,
∴函数f(x)的解析式为,x∈[-2,2];
(2),∵t∈[2,6],x∈[-2,0],∴,f(x)<0
,∴
时,
猜想f(x)在[0,2]上的单调递增区间为
(3)t≥9时,任取-2≤x1<x2≤2,

∴f(x)在[-2,2]上单调递增,即f(x)∈[f(-2),f(2)],
即f(x)∈[4-2t,2t-4],t≥9,∴4-2t≤-14,2t-4≥14,
∴14∈[4-2t,2t-4],∴当t≥9时,函数y=f(x)的图象上至少有一个点落在直线y=14上.
分析:(1)设x∈(0,2]?-x∈[-2,0)?,由f(x)为奇函数可得f(-x)=-f(x),代入可求f(x)x∈(0,2];
由奇函数的性质可知f(0)=0,从而可得f(x) x∈[-2,2]
(2)由知<0,x∈[-2,0],t∈[2,6]
利用平均值不等式可得,(当时取等号)
(3)利用单调性的定义(或导数法)判断函数在[-2,2]上单调性,从而确定函数的值域,然后证明14在值域内即可
点评:本题综合考查函数的解析式的求解、利用均值不等式求函数的最值、及利用定义或导数法判断函数的单调性,在利用均值不等式求最值时,要注意验证各项的符号及等号成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案