精英家教网 > 高中数学 > 题目详情
精英家教网如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=
2
,∠CDA=45°.
(I)求证:平面PAB⊥平面PAD;
(II)设AB=AP.
(i)若直线PB与平面PCD所成的角为30°,求线段AB的长;
(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.
分析:(I)根据线面垂直的定义可得PA⊥AB,再结合DA⊥AB得到AB⊥平面PAD,最后根据平面与平面垂直的判定定理可得平面PAB与平面PAD垂直;
(II)(i)以A为坐标原点,建立空间直角坐标系,根据已知数据设出B、P、E、C、D的坐标,用法向量的方法结合数量积计算公式,可得线段AB的长;
(ii)先假设存在点G满足条件,再通过计算GB之长,与GD长加以比较,得出GB>GD,与已知条件GB=GD=1矛盾,故不存在满足条件的点G.
解答:解:(I)证明:∵PA⊥平面ABCD,AB?平面ABCD
∴PA⊥AB
又∵AB⊥AD,PA∩AD=A
∴AB⊥平面PAD
又∵AB?平面PAB,
∴平面PAB⊥平面PAD
(II)(i)以A为坐标原点,建立空间直角坐标系A-xyz(如图)精英家教网
在平面ABCD内,作CE∥AB交于点E,
则CE⊥AD                                                   
在Rt△CDE中,DE=CD•cos45°=1,
             CE=CD•sin45°=1
设AB=AP=t,则B(t,0,0),P(0,0,t)
由AB+AD=4,得AD=4-t,
所以E(0,3-t,0),C(1,3-t,0),D(0,4-t,0)
CD
=(-1,1,0)
PD
=(0,4-t,-t)

设平面PCD的法向量为
n
=(x,y,z)
n
CD
n
PD
,得
-x+y=0
(4-t)y-tz=0

取x=t,得平面PCD的一个法向量为
n
=(t,t,4-t)

PB
=(t,0,-t)
,故由直线PB与平面PCD所成的角为30°得
cos(90°-30°)=
1
2
=
|
n
PB
|
|n
|•|
PB
|

|2t2-4t|
t2+0+(-t)2
t2+t2+(4-t)2
=
1
2

解得t=
4
5
或t=4(舍去,因为AD=4-t>0)
所以AB=
4
5

(ii)假设在线段AD上存在一个点G到P、B、C、D的距离都相等精英家教网
由GC=GD,得∠GCD=∠GDC=45°                                  
从而∠CGD=90°,即CG⊥AD
所以GD=CD•cos45°=1
设AB=λ,则AD=4-λ,AG=AD-GD=3-λ
在Rt△ABG中,
GB=
AB2+AG2
=
λ2+(3-λ)2
=
2(λ -
3
2
)
2
+
9
2
>1

这GB=GD与矛盾.
所以在线段AD上不存在一个点G,使得点G到B、C、D的距离都相等.
从而,在线段AD上不存在一个点G,使得点G到点P、B、C、D的距离都相等.
点评:本小题主要考查空间中的线面关系,考查面面垂直的判定及线面角的计算,考查空间想象能力、推理论证能力和运算能力,考查转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案