£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Èô¾ØÕóAÓÐÌØÕ÷Öµ¦Ë1=2£¬¦Ë2=-1£¬ËüÃÇËù¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿·Ö±ðΪe1=
1
0
ºÍe2=
0
1
£®
£¨I£©Çó¾ØÕóA£»
£¨II£©ÇóÇúÏßx2+y2=1ÔÚ¾ØÕóAµÄ±ä»»Ïµõ½µÄÐÂÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ
x=2sin¦È
y=cos¦È
(¦È
Ϊ²ÎÊý£©£¬C2µÄ²ÎÊý·½³ÌΪ
x=2t
y=t+1
(t
Ϊ²ÎÊý£©
£¨I£©Èô½«ÇúÏßC1ÓëC2ÉÏËùÓеãµÄºá×ø±ê¶¼Ëõ¶ÌΪԭÀ´µÄÒ»°ë£¨×Ý×ø±ê²»±ä£©£¬·Ö±ðµÃµ½ÇúÏßC¡ä1ºÍC¡ä2£¬Çó³öÇúÏßC¡ä1ºÍC¡ä2µÄÆÕͨ·½³Ì£»
£¨II£©ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¹ý¼«µãÇÒÓëC¡ä2´¹Ö±µÄÖ±Ïߵļ«×ø±ê·½³Ì£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
É躯Êýf£¨x£©=|2x-1|+|2x-3|£¬x¡ÊR£¬
£¨I£©Çó¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ü5µÄ½â¼¯£»
£¨II£©Èôg(x)=
1
f(x)+m
µÄ¶¨ÒåÓòΪR£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©£¨I£©ÉèA=£¨
ab
cd
£©£¬ÓÉA
i
=¦Ë1
i
£¬A
j
=¦Ë2
j
¿ÉÇóµÃa£¬b£¬c£¬d£»
£¨II£©ÉèÇúÏßx2+y2=1ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóA¶ÔÓ¦µÄ±ä»»Ïµõ½µÄµãΪ£¨x¡ä£¬y¡ä£©£¬ÓÉ
20
0-1
x
y
=
x¡ä
y¡ä
£¬¿ÉÇóµÃxÓëx¡ä£¬yÓëy¡äÖ®¼äµÄ¹Øϵ£¬´Ó¶ø¿ÉµÃÐÂÇúÏß·½³Ì£»
£¨2£©£¨I£©ÏûµôC1£º
x=2sin¦È
y=cos¦È
(¦È
Ϊ²ÎÊý£©ÓëC2£º
x=2t
y=t+1
(t
Ϊ²ÎÊý£©ÖеIJÎÊý£¬¿ÉÇóµÃÆäÆÕͨ·½³Ì£»
£¨¢ò£©ÒÀÌâÒâ¿ÉÖª£¬ÔÚÖ±½Ç×ø±êϵÖйý¼«µã¼´Îª¹ýÔ­µãÓëÇúÏßC2´¹Ö±µÄÖ±Ïß·½³ÌΪy=-x£¬ÓÉtan¦È=1¿Éת»¯Îª¼«×ø±ê·½³Ì£»
£¨3£©£¨I£©Í¨¹ý¶Ôx·ÖÀàÌÖÂÛ£¬È¥µô¾ø¶ÔÖµ·ûºÅ£¬×ª»¯ÎªÒ»´Î²»µÈʽ×飬¼´¿ÉÇóµÃ²»µÈʽf£¨x£©¡Ü5µÄ½â¼¯£»
£¨II£©g£¨x£©=
1
f(x)+m
µÄ¶¨ÒåÓòΪR?f£¨x£©+m¡Ù0ºã³ÉÁ¢?f£¨x£©+m=0ÔÚRÉÏÎ޽⣬ÀûÓþø¶ÔÖµº¯ÊýµÄ¼¸ºÎÒâÒå¿ÉÇóµÃf£¨x£©µÄ×îСֵ£¬´Ó¶ø¿ÉÇóµÃmµÄ·¶Î§£®
½â´ð£º½â£º£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
£¨I£©ÉèA=£¨
ab
cd
£©£¬ÓÉA
i
=¦Ë1
i
£¬A
j
=¦Ë2
j
µÃ£º
ab
cd
1
0
=2
1
0
=
2
0
£¬
ab
cd
0
1
=-1¡Á
0
1
=
0
-1
£¬
¡à
a=2
c=0
b=0
d=-1
£¬¹ÊA=
20
0-1
¡­4·Ö
£¨II£©ÉèÇúÏßx2+y2=1ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóA¶ÔÓ¦µÄ±ä»»Ïµõ½µÄµãΪ£¨x¡ä£¬y¡ä£©£¬Ôò
20
0-1
x
y
=
x¡ä
y¡ä
£¬¼´
x¡ä=2x
y¡ä=-y
£¬
¡à
x=
1
2
x¡ä
y=-y¡ä
£¬´Ó¶ø(
1
2
x¡ä)
2
+£¨-y¡ä£©2=1£¬¼´
x¡ä2
4
+y¡ä2=1£¬
¡àÐÂÇúÏß·½³ÌΪ
x2
4
+y2=1¡­7·Ö
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
¡ß£¨¢ñ£©C1£º
x=2sin¦È
y=cos¦È
(¦È
Ϊ²ÎÊý£©£¬C2£º
x=2t
y=t+1
(t
Ϊ²ÎÊý£¬
¡àC1µÄÆÕͨ·½³ÌΪx2+y2=1£¬C2µÄÆÕͨ·½³ÌΪy=x-1¡­4·Ö
£¨¢ò£©ÔÚÖ±½Ç×ø±êϵÖйý¼«µã¼´Îª¹ýÔ­µãÓëÇúÏßC2´¹Ö±µÄÖ±Ïß·½³ÌΪy=-x£¬
ÔÚ¼«×ø±êϵÖУ¬Ö±Ïß»¯Îªtan¦È=1£¬·½³ÌΪ¦È=
¦Ð
4
»ò¦È=
3¦Ð
4
¡­7·Ö
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
£¨¢ñ£©
x£¼
1
2
4-4x¡Ü5
»ò
1
2
¡Üx¡Ü
3
2
2¡Ü5
»ò
x£¾
3
2
4x-4¡Ü5
£¬
¡à²»µÈʽµÄ½â¼¯Îªx¡Ê[-
1
4
£¬
9
4
]¡­4·Ö
£¨¢ò£©Èôg£¨x£©=
1
f(x)+m
µÄ¶¨ÒåÓòΪR£¬Ôòf£¨x£©+m¡Ù0ºã³ÉÁ¢£¬¼´f£¨x£©+m=0ÔÚRÉÏÎ޽⣬
ÓÖf£¨x£©=|2x-1|+|2x-3|¡Ý|2x-1-2x+3|=2£¬
¡àf£¨x£©µÄ×îСֵΪ2£¬
¡àm£¼-2¡­7·Ö£®
µãÆÀ£º±¾Ì⿼²é¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬¿¼²éÌØÕ÷ÖµÓëÌØÕ÷ÏòÁ¿µÄ¼ÆË㣬¿¼²é²ÎÊý·½³Ì»¯³ÉÆÕͨ·½³Ì£¬¿¼²é³éÏó˼άÓëת»¯ÄÜÁ¦£¬¿¼²é×ۺϷÖÎöÓëÔËËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º½­ËÕÊ¡µ¤ÑôÊÐ08-09ѧÄê¸ß¶þÏÂѧÆÚÆÚÄ©²âÊÔ£¨Àí£© ÌâÐÍ£º½â´ðÌâ

 £¨±¾ÌâÊÇÑ¡×öÌ⣬Âú·Ö28·Ö£¬ÇëÔÚÏÂÃæËĸöÌâÄ¿ÖÐÑ¡Á½¸ö×÷´ð£¬Ã¿Ð¡Ìâ14·Ö£¬¶à×ö°´Ç°Á½Ìâ¸ø·Ö£©

A£®(Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²)

Èçͼ£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬PAÊÇ¡ÑOµÄÇÐÏߣ¬PB½»ACÓÚµãE£¬½»¡ÑOÓÚµãD£¬ÈôPE£½PA£¬£¬PD£½1£¬BD£½8£¬ÇóÏ߶ÎBCµÄ³¤.

 

 

 

 

 

 

B£®(Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»)

ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÍÖÔ²£¬¾ØÕóÕ󣬣¬ÇóÔÚ¾ØÕó×÷ÓÃϱ任ËùµÃµ½µÄͼÐεÄÃæ»ý.

C£®(Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì)

Ö±Ïß(Ϊ²ÎÊý£¬Îª³£ÊýÇÒ)±»ÒÔÔ­µãΪ¼«µã£¬ÖáµÄÕý°ëÖáΪ¼«Öᣬ·½³ÌΪµÄÇúÏßËù½Ø£¬Çó½ØµÃµÄÏÒ³¤.

D£®(Ñ¡ÐÞ4-5£º²»µÈʽѡ½²)

É裬ÇóÖ¤£º.

 

 

 

 

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸