£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Èô¾ØÕóAÓÐÌØÕ÷Öµ¦Ë
1=2£¬¦Ë
2=-1£¬ËüÃÇËù¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿·Ö±ðΪ
e1=ºÍe2=£®
£¨I£©Çó¾ØÕóA£»
£¨II£©ÇóÇúÏßx
2+y
2=1ÔÚ¾ØÕóAµÄ±ä»»Ïµõ½µÄÐÂÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÇúÏßC
1µÄ²ÎÊý·½³ÌΪ
(¦ÈΪ²ÎÊý£©£¬C
2µÄ²ÎÊý·½³ÌΪ
(tΪ²ÎÊý£©
£¨I£©Èô½«ÇúÏßC
1ÓëC
2ÉÏËùÓеãµÄºá×ø±ê¶¼Ëõ¶ÌΪÔÀ´µÄÒ»°ë£¨×Ý×ø±ê²»±ä£©£¬·Ö±ðµÃµ½ÇúÏßC¡ä
1ºÍC¡ä
2£¬Çó³öÇúÏßC¡ä
1ºÍC¡ä
2µÄÆÕͨ·½³Ì£»
£¨II£©ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¹ý¼«µãÇÒÓëC¡ä
2´¹Ö±µÄÖ±Ïߵļ«×ø±ê·½³Ì£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
É躯Êýf£¨x£©=|2x-1|+|2x-3|£¬x¡ÊR£¬
£¨I£©Çó¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ü5µÄ½â¼¯£»
£¨II£©Èô
g(x)=µÄ¶¨ÒåÓòΪR£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®