【题目】已知函数.
(1)若,求在时的最值;
(2)若,时,都有,求实数的范围.
【答案】(1)最小值为,最大值为;(2).
【解析】
(1)将代入函数的解析式,求出函数的导数,利用导数分析函数在区间上的单调性,可得出函数在时的最小值和最大值;
(2)由可知函数在上单调递增,函数在上是减函数,设,由可得出,构造函数,可得出在区间上为减函数,转化为在区间上恒成立,利用参变量分离法可求出实数的取值范围.
(1)当时,,则.
当时,令,得.
当时,,此时,函数单调递减;
当时,,此时,函数单调递增.
所以,函数在区间上的最小值为,
又,,
则函数在区间上的最大值为;
(2)若,在区间上是增函数,函数是减函数.
不妨设,由已知:,
,
记,,
则在区间是减函数,在上恒成立.
,记,在上恒成立,
函数在区间上单调递减,则,,又,
因此,实数取值范围是.
科目:高中数学 来源: 题型:
【题目】某同学研究曲线的性质,得到如下结论:①的取值范围是;②曲线是轴对称图形;③曲线上的点到坐标原点的距离的最小值为. 其中正确的结论序号为( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的焦点分别为,,椭圆的离心率为,且经过点,经过,作平行直线,,交椭圆于两点,和两点,.
(1)求的方程;
(2)求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.
(1)若点的极坐标为,求的值;
(2)求曲线的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义向量的外积:叫做向量与的外积,它是一个向量,满足下列两个条件:
(1),,且,和构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);
(2)的模(表示向量、的夹角);
如图,在正方体,有以下四个结论:
①与方向相反;
②;
③与正方体表面积的数值相等;
④与正方体体积的数值相等.
这四个结论中,正确的结论有( )个
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com