精英家教网 > 高中数学 > 题目详情
已知f(x)是R上的增函数,点A(-1,1),B (1,3)在它的图象上,f-1(x)是它的反函数,那么不等式|f -1(log2x)|<1的解集为(  )
分析:由题意可得点C(1,-1)、D(3,1)在反函数f-1(x)的图象上,且f-1(x)在R上是增函数.故由不等式|f -1(log2x)|<1可得1<log2x<3,由此求得不等式的解集.
解答:解:根据函数与它的反函数的关系可得点C(1,-1)、D(3,1)在反函数f-1(x)的图象上,且f-1(x)在R上是增函数.
故由不等式|f -1(log2x)|<1可得1<log2x<3,∴2<x<8,
故选C.
点评:本题主要考查函数与它的反函数的关系,对数不等式的解法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知f(x)是R上的偶函数,f(2)=-1,若f(x)的图象向右平移1个单位长度,得到一个奇函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零点,比较f(a),f(-2),f(1.5)的大小,用小于符号连接为
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=
x

(1)求当x<0时,f(x)的表达式
(2)判断f(x)在区间(0,+∞)的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若g(-1)=2,则f(2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①命题“已知f(x)是R上的减函数,若a+b≥0,则f(a)+f(b)≤f(-a)+f(-b)”的逆否命题为真命题;
②若p或q为真命题,则p、q均为真命题;
③若命题p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要条件.
其中正确的是(  )

查看答案和解析>>

同步练习册答案