精英家教网 > 高中数学 > 题目详情

【题目】已知则下列结论中正确的是

A. 将函数的图象向左平移个单位后得到函数的图象

B. 函数图象关于点中心对称

C. 函数的图象关于对称

D. 函数在区间内单调递增

【答案】D

【解析】对于将函数的图象向左平移个单位后得到函数 错;对于函数图象是轴对称图形,不是中心对称图形,故 对于 , 函数 , 时,函数不取最值,所以 错;故选.

方法点睛】本题主要通过对多个命题真假的判断,主要综合考查三角函数的图象变换以及函数的对称性与单调性属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题尽量挖掘出题目中的隐含条件,另外要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(x+1).
(1)将函数f(x)的图象上的所有点向右平行移动1个单位得到函数g(x)的图象,写出函数g(x)的表达式;
(2)若关于x的函数y=g2(x)﹣mg(x2)+3在[1,4]上的最小值为2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数F(x)=lnx(x>1)的图象与函数G(x)的图象关于直线y=x对称,若函数f(x)=(k﹣1)x﹣G(﹣x)无零点,则实数k的取值范围是(
A.(1﹣e,1)
B.(1﹣e,∞)
C.(1﹣e,1]
D.(﹣∞,1﹣e)∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,且,.四边形满足,,.为侧棱的中点,为侧棱上的任意一点.

(1)若的中点,求证: 面平面

(2)是否存在点,使得直线与平面垂直? 若存在,写出证明过程并求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年,电商行业的蓬勃发展也带动了快递业的高速发展.某快递配送站每天至少要完成1800件包裹的配送任务,该配送站有8名新手快递员和4名老快递员,但每天最多安排10人进行配送.已知每个新手快递员每天可配送240件包裹,日工资320元;每个老快递员每天可配送300件包裹,日工资520元.

(Ⅰ)求该配送站每天需支付快递员的总工资最小值;

(Ⅱ)该配送站规定:新手快递员某个月被评为“优秀”,则其下个月的日工资比这个月提高12%.那么新手快递员至少连续几个月被评为“优秀”,日工资会超过老快递员?

(参考数据: .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个关于圆锥曲线的命题中:
①双曲线 与椭圆 有相同的焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;
③设A,B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;
④过定圆C上一点A作圆的动弦AB,O为原点,若 则动点P的轨迹为椭圆.其中正确的个数是(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:2x+y+2=0,l2:mx+4y+n=0
(1)若l1⊥l2 , 求m的值,;
(2)若l1∥l2 , 且它们的距离为 ,求m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.
(1)求曲线C的直角坐标方程;
(2)若曲线C1 (α为参数)与曲线C所表示的图形都相切,求r的值.

查看答案和解析>>

同步练习册答案