精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若函数有两个零点,求实数a的取值范围

2)证明:

【答案】1;(2)证明见解析.

【解析】

1)令,得到,令,利用导数求得函数的单调性与最小值,要使函数有两个零点,则函数的图象与有两个不同的交点,即可求解;

2)要证明,只需,令,利用导数求得函数的的单调性与最值,即可求解.

1)由题意,函数的定义域为

,则

,令,得

时,单调递减,

时,单调递增,

所以有最小值,且为

又当时,;当时,

所以要使函数有两个零点,则函数的图象与有两个不同的交点,

,即实数a的取值范围为.

2)由(1)知,函数有最小值为,可得

当且仅当时取等号,

因此要证明

即只需要证明

,则

,得.

时,单调递增,

时,单调递减,

所以

恒成立,当且仅当时取等号,

所以,当且仅当时取等号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在梯形中,,过分别作的垂线,垂足分别为,已知,将梯形沿同侧折起,使得平面平面,平面平面,得到图2.

(1)证明:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某省从121日至224日的新冠肺炎每日新增确诊病例变化曲线图.

若该省从121日至224日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列的前n项和为,则下列说法中正确的是(

A.数列是递增数列B.数列是递增数列

C.数列的最大项是D.数列的最大项是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,A的坐标为(2,0),B是第一象限内的一点,以C为圆心的圆经过OAB三点,且圆C在点A,B处的切线相交于P,若P的坐标为(4,2),则直线PB的方程为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点A1,A2,…,An,…B1,B2,…,Bn,…均在抛物线x=y2上,线段AnBnx轴的交点为Hn.将△OA1B1,△H1A2B2,…,△HnAn+1Bn+1,…的面积分别记为S1,S2,…,Sn+1,….已知上述三角形均为等腰直角三角形,且它们的顶角分别为O,H1,…,Hn,….

1)求S1S2的值;

2)证明:nsnn2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是椭圆的左、右焦点,椭圆的短轴长为,点是椭圆上的一点,过点轴的垂线交椭圆于另一点不过点),且的周长的最大值为8.

1)求椭圆的标准方程;

2)若过焦点,在椭圆上取两点,连接,与轴的交点分别为,过点作椭圆的切线,当四边形为菱形时,证明:直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),.

1)当时,求函数的极小值;

2)若当时,关于的方程有且只有一个实数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数的导函数是奇函数,则称函数是“双奇函数”.函数

1)若函数是“双奇函数”,求实数的值;

2)若时,讨论函数的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植物感染病毒极易导致死亡,某生物研究所为此推出了一种抗病毒的制剂,现对株感染了病毒的该植株样本进行喷雾试验测试药效.测试结果分植株死亡植株存活两个结果进行统计;并对植株吸收制剂的量(单位:)进行统计规定:植株吸收在(包括)以上为足量,否则为不足量”.现对该株植株样本进行统计,其中植株存活株,对制剂吸收量统计得下表.已知植株存活制剂吸收不足量的植株共.

编号

吸收量

1)完成以下列联表,并判断是否可以在犯错误概率不超过的前提下,认为植株的存活制剂吸收足量有关?

吸收足量

吸收不足量

合计

植株存活

植株死亡

合计

2)若在该样本制剂吸收不足量的植株中随机抽取株,求这株中恰有植株存活的概率.

参考数据:

,其中

查看答案和解析>>

同步练习册答案