已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值.]
(1)a=1.(2)
【解析】
试题分析:(1)f(x)的定义域为(-a,+∞).
f ′(x)=1-=.
由f ′(x)=0,得x=1-a>-a.
当x变化时,f ′(x),f(x)的变化情况如下表:
x |
(-a,1-a) |
1-a |
(1-a,+∞) |
f ′(x) |
- |
0 |
+ |
f(x) |
?? |
极小值 |
因此,f(x)在x=1-a处取得最小值,
故由题意f(1-a)=1-a=0,所以a=1.
(2)当k≤0时,取x=1,有f(1)=1-ln2>0,
故k≤0不合题意.
当k>0时,令g(x)=f(x)-kx2,
即g(x)=x-ln(x+1)-kx2.
g′(x)=-2kx=.
令g′ (x)=0,得x1=0,x2=>-1.
①当k≥时,≤0,g′(x)<0在(0,+∞)上恒成立,因此g(x)在[0,+∞)上单调递减.从而对于任意的x∈[0,+∞),总有g(x)≤g(0)=0,即f(x)≤kx2在[0,+∞)上恒成立.
故k≥符合题意.
②当0<k<时, >0,对于x∈(0,),g′(x)>0,故g(x)在(0,)内单调递增.因此当取x0∈(0,)时,g(x0)>g(0)=0,即f(x0)≤kx不成立.
故0<k<不合题意.
综上,k的最小值为.
考点:导数的运用
点评:主要是考查了运用导数求解函数单调性,以及函数最值的运用,属于中档题。
科目:高中数学 来源: 题型:
已知函数f(x)=x|m-x|(x∈R),且f(4)=0.
(1)求实数m的值;
(2)作出函数f(x)的图像;
(3)根据图像指出f(x)的单调递减区间;
(4)根据图像写出不等式f(x)>0的解集;
(5)求当x∈[1,5)时函数的值域.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学对数与对数函数、反比例函数与幂函数专项训练(河北) 题型:解答题
已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是关于x的方程f(x)-g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围;
查看答案和解析>>
科目:高中数学 来源:2014届江西省高二下学期第二次月考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013届新课标高三配套第四次月考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖南省、岳阳县一中高三11月联考理科数学 题型:解答题
(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnx,g(x)=ax2+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com