精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,过点的直线交抛物线两点.

1)当时,求直线的方程;

2)若过点且垂直于直线的直线与抛物线交于两点,记的面积分别为,求的最小值.

【答案】1;(2.

【解析】

1)设直线的方程为,设点,将直线的方程与抛物线的方程联立,列出韦达定理,结合条件可求得的值,进而可求得直线的方程;

2)设直线的方程为,设点,将直线的方程与抛物线的方程联立,列出韦达定理,利用弦长公式求得,利用三角形的面积公式可求得,同理可得出的表达式,然后利用基本不等式可求得的最小值.

1)直线过的定点在横轴上,且直线与抛物线相交,则斜率一定不能为,所以可设直线方程为.

联立,消去

由韦达定理得

所以.

因为,所以,解得.

所以直线的方程为

2)根据(1),设直线的方程为.

联立,消去

由韦达定理得

.

因为直线与直线垂直,

且当时,直线的方程为,则此时直线的方程为.但此时直线与抛物线没有两个交点,

所以不符合题意,所以.

所以直线的斜率为,可得

当且仅当时,等号成立,因此,的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天上有些恒星的亮度是会变化的,其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化.第一颗被描述的经典造父变星是在1784.

上图为一造父变星的亮度随时间的周期变化图,其中视星等的数值越小,亮度越高,则此变星亮度变化的周期、最亮时视星等,分别约是(

A.5.53.7B.5.44.4C.6.53.7D.5.54.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,雨水、惊蛰、春分、清明日影之和为三丈二尺,前七个节气日影之和为七丈三尺五寸,问谷雨日影长为(

A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,.

1)求证:

2)若点 上一点,且,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有9位身高各异的同学拍照留念,分成前后两排,前排4人,后排5人,要求每排同学的身高从中间到两边依次递减,则不同的排队方式有________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与直线只有一个公共点,点是抛物线上的动点.

1)求抛物线的方程;

2)①若,求证:直线过定点;

②若是抛物线上与原点不重合的定点,且,求证:直线的斜率为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列满足:

(Ⅰ)若

(ⅰ)求证:

(ⅱ)数列的前项和为,求证:

(Ⅱ)若对任意的,都有,写出的取值范围并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】6个数20192019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为______ .

查看答案和解析>>

同步练习册答案