分析 (1)根据圆的切线到圆心的距离等于半径,利用点到直线的距离公式建立关于a的方程,解之即可得到a的值;
(2)根据圆的切线到圆心的距离等于半径,可得当直线的斜率不存在时方程为x=3,符合题意.而直线的斜率存在时,利用点斜式列式并结合点到直线的距离公式加以计算,得到切线方程为3x-4y-5=0,即可得到答案.
解答 解:(1)圆心坐标C(1,2),半径R=2,
若若直线ax-y+4=0与圆C相切,
则圆心到直线的距离d=$\frac{|a+2|}{\sqrt{1+{a}^{2}}}$=2,
解得a=0或a=$\frac{4}{3}$…(4分)
(2)圆心C(1,2),半径为r=2,
当直线的斜率不存在时,直线方程为x=3,
由圆心C(1,2)到直线x=3的距离d=3-1=2=r知,
直线与圆相切.
当直线的斜率存在时,设方程y-1=k(x-3),
即kx-y+1-3k=0,
由题意知$\frac{|k-2+1-3k|}{\sqrt{1+{k}^{2}}}$=2,解得k=$\frac{3}{4}$,
即直线方程为y-1=$\frac{3}{4}$(x-3),
即3x-4y-5=0,
综上所述,过M点的圆的切线方程为x=3或3x-4y-5=0.
点评 本题主要考查直线和圆的位置关系的应用,根据点到直线的距离公式以及相交弦长公式是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | $[{kπ-\frac{5π}{12},kπ+\frac{π}{12}}],k∈z$ | B. | $[{kπ-\frac{π}{6},kπ+\frac{π}{3}}],k∈z$ | ||
C. | $[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}],k∈z$ | D. | $[{kπ+\frac{π}{6},kπ+\frac{5π}{6}}],k∈z$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:选择题
设x、y∈R,a>1,b>1,若ax=by=3,a+b=2,则的最大值为( )
A.2 B. C.1 D.
查看答案和解析>>
科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:选择题
省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是( ).(下表是随机数表第7行至第9行)
A.105 B.507 C.071 D.717
查看答案和解析>>
科目:高中数学 来源:2015-2016学年江西省南昌市高二理下学期期末考试数学试卷(解析版) 题型:选择题
设函数,其中,,存在使得成立,则实数的值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com