精英家教网 > 高中数学 > 题目详情
已知正实数a、b满足a+b=2,且
1
a
+
4
b
≥m恒成立,则实数m的最大值是
 
考点:基本不等式在最值问题中的应用
专题:计算题,不等式的解法及应用
分析:欲求实数m的最大值,根据题意知只须求出
1
a
+
4
b
的最小值即可.由已知中正实数a,b满足a+b=2,根据基本不等式“1的活用”,利用分式的性质,化简得到两数为定值的情况,利用基本不等式即可得到答案.
解答: 解:∵
1
a
+
4
b
=
1
2
1
a
+
4
b
)(a+b)=
1
2
(5+
b
a
+
4a
b
)≥
9
2

1
a
+
4
b
的最小值为
9
2

1
a
+
4
b
≥m恒成立,
∴m≤
9
2

∴实数m的最大值是
9
2

故答案为:
9
2
点评:本题考查的知识点是基本不等式在最值问题中的应用,其中对于已知两数之和为定值,求两分式之和的最值时,“1的活用”是最常用的办法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数数f(x)=x+
a
x
(x≠0),
(1)写出函数f(x)的单调区间;
(2)当a=2时,用定义证明函数数f(x)在[
2
,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+4)x-2a2+5a+3(a∈R).
(1)当a=3时,求函数f(x)零点;
(2)若方程f(x)=0的两个实数根都在区间(-1,3),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax2+2x+c(x∈R)的最小值为0,f(1)的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和记为Sn.已知a8=26,a15=40.
(1)求通项an
(2)若Sn=350,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对?x∈(0,+∞),不等式x2-ax+2>0恒成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x<1,则x+
1
x-1
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题P:y=
x2+mx+4
的定义域为R,q:f(x)=x2-(m+1)x+m在[2,+∞)是增函数.
①求P真,q真的m取值情况.
②若PVq为真,求m范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校网络中心为配合开展研究性学习,便于上网查阅有关资料,决定在平时实施有效开放,为满足同学们的不同需求,设有如下的优惠计划,共你选择:
  计划A 计划B
 每月的基本服务费 10元 20元
 免费上网时间 首用10小时 首用40小时
 以后每小时收费 0.5元 0.5元
(1)分别将A、B计划的费用y表示时间t的函数
(2)当上网时间多少时,计划A和计划B的费用相等,选择计划B比计划A少花钱,最多能少花多少钱?

查看答案和解析>>

同步练习册答案