精英家教网 > 高中数学 > 题目详情

【题目】某品牌服装店为了庆祝开业两周年,特举办“你敢买,我就送”的回馈活动,规定店庆当日进店购买指定服装的消费者可参加游戏,赢取奖金,游戏分为以下两种:

游戏 1:参加该游戏赢取奖金的成功率为,成功后可获得元奖金;

游戏 2:参加该游戏赢取奖金的成功率为,成功后可得元奖金;

无论参与哪种游戏,未成功均没有收获,每人有且仅有一次机会,且每次游戏成功与否均互不影响,游戏结束后可到收银台领取奖金。

(Ⅰ)已知甲参加游戏 1,乙参加游戏 2,记甲与乙获得的总奖金为,若,求的值;

(Ⅱ)若甲、乙、丙三人都选择游戏 1或都选择游戏 2,问:他们选择何种规则,累计得到奖金的数学期望值最大?

【答案】(Ⅰ)0.6(Ⅱ)见解析

【解析】

(Ⅰ)根据甲、乙参加游戏会有4种结果,列出方程求出p的值,再计算Pξ200)的值;(Ⅱ)分别计算甲、乙、丙都选游戏1和都选游戏2时,累计得到的奖金,再比较它们的大小即可.

(Ⅰ)甲、乙参加游戏,会有4种结果;

P

0.41p

0.61p

0.4p

0.6p

ξ

0

200

300

500

Pξ300)=Pξ500)=0.6p0.24,解得p0.4

所以Pξ200)=Pξ0+Pξ200)=0.4×(10.4+0.6×(10.4)=0.6

(Ⅱ)都选游戏1时,设赢的人数为X,则XB30.6),

EX)=np3×0.61.8

累计赢取的奖金为JX)=1.8×200360(元);

都选游戏2时,设赢的人数为Y,则YB30.4),

EY)=np3×0.41.2

累计得到的奖金为JY)=1.2×300360(元);

甲、乙、丙三人都选择游戏1或都选择游戏2,累计得到奖金的数学期望值一样多.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,⊥底面的中点,与平面所成的角为.

1)求证:

2)求异面直线所成的角的大小(结果用反三角函数表示);

3)若直线与平面所成角分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过多很有创意的求法,如著名的蒲丰试验,受其启发,我们也可以通过设计下面的试验来估计的值,试验步骤如下:①先请高二年级名同学每人在小卡片上随机写下一个实数对;②若卡片上的能与构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为;④根据统计数估计的值.那么可以估计的值约为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,离心率是椭圆的左顶点,是椭圆的左焦点,,直线.

(1)求椭圆方程;

(2)直线过点与椭圆交于两点,直线分别与直线交于两点,试问:以为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,短轴端点与两焦点围成的三角形面积为.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,且过点为坐标原点,当△为直角三角形,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:,且an+1n=12…)集合M={an|}中的最小元素记为m.

1)若a1=20,写出ma10的值:

2)若m为偶数,证明:集合M的所有元素都是偶数;

3)证明:当且仅当时,集合M是有限集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,菱形中, .将沿翻折到,使,如图2

)求证:平面平面

)求直线AE与平面ABC所成角的正弦值;

)设为线段上一点,若平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1中,侧棱垂直于底面,∠ACB90°ACBCAA1D是棱AA1的中点.

(1)证明:平面BDC1⊥平面BDC

(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为 为坐标原点.

I)求椭圆的方程.

II)若点为椭圆上一动点,点与点的垂直平分线l交轴于点的最小值.

查看答案和解析>>

同步练习册答案