精英家教网 > 高中数学 > 题目详情
已知f(x)=3x2-4x+5,g(x)=f(x-2),则g(3)=
 
考点:函数的值
专题:函数的性质及应用
分析:由g(x)=f(x-2)得g(3)=f(1),代入f(x)的解析式求出值.
解答: 解:∵g(x)=f(x-2),
∴g(3)=f(3-2)=f(1)=3-4+5=4
故答案为:4;
点评:本题考查由解析式求函数值,属于一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
x2-3x+2
的单调递增区间为(  )
A、[
3
2
,+∞)
B、(-∞,
3
2
]
C、[2,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2-x(x<1)
1
2
(x≥1)
,若0<f (x0)<1,则x0的取值范围是(  )
A、[1,+∞)
B、(1,+∞)
C、(-∞,1]
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P={x|2≤x≤6},Q={x|a≤x≤a+1}若Q⊆P,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为a,E,F分别是棱AB,BC上的点,且AE=BF,若A1E与C1F所成的角最小,则有(  )
A、AE=BF=
1
4
a
B、AE=BF=
1
3
a
C、AE=BF=
2
5
a
D、AE=BF=
1
2
a

查看答案和解析>>

科目:高中数学 来源: 题型:

甲,乙两人约定上午7:00至8:00之间到某站乘公共汽车,在这段时间内有2班公共汽车,它们开车的时刻分别是7:30和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7时到8时的任何时刻到达车站是等可能的)

查看答案和解析>>

科目:高中数学 来源: 题型:

集合{(x,y)
.
y=-x+2
y=
1
2
x+2
}
⊆{(x,y)|y=3x+b},则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,底面abcd是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD,设E、F分别为PC、BD的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求空间几何体BCDP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=(  )
A、1:1B、1:2
C、1:3D、1:4

查看答案和解析>>

同步练习册答案