分析 由充分必要条件的定义和三角形的余弦定理,结合基本不等式,即可得到结论.
解答 解:ab>c2⇒cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$>$\frac{2ab-ab}{2ab}$=$\frac{1}{2}$⇒C<$\frac{π}{3}$,
由∠C<$\frac{π}{3}$,则cosC>$\frac{1}{2}$,
由余弦定理可得$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$>$\frac{1}{2}$,
(a-b)2-c2>-ab,
即为c2-ab<(a-b)2,
则推不出c2-ab<0,
即有“ab>c2”是“∠C<$\frac{π}{3}$”的充分非必要条件.
故答案为:充分非必要.
点评 本题主要考查了解三角形的知识,放缩法证明不等式的技巧,解三角形的余弦定理,同时考查充分必要条件的判断,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{6}$ | D. | $\frac{{\sqrt{2}}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{10}}}{5}$ | B. | $\frac{{3\sqrt{10}}}{20}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{{2\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ab+1>a+b | B. | ab+1<a+b | C. | ab+1≥a+b | D. | ab+1≤a+b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com