下列叙述正确的序号是 。
(1)对于定义在R上的函数,若,则函数不是奇函数;
(2) 定义在上的函数,在区间上是单调增函数,在区间上也是单调增函数,则函数在上是单调增函数;
(3) 已知函数的解析式为=,它的值域为,那么这样的函数有9个;
(4)对于任意的,若函数,则
(3),(4)
【解析】
试题分析:(1)函数y=0(x∈R)既是奇函数又是偶函数,但f(3)=f(-3),故不对;(2)由增函数的定义中“任意性”知,两个单调区间不能并在一起,故不对;(3)∵函数=的值域为,∴x的取值集合为{-2,2,3,-3}、{-2,2,3}、{-2,2,-3}、{2,3,-3}、{-2,3,-3}、{2,3 }、{2, -3}、{-2,3 }、{-2,-3}共计9个,所以符合题意的函数有9个,故正确;(4)∵在上单调递增且为上凸函数,∴,故正确。
考点:本题考查了函数的单调性
点评:奇(偶)函数和增函数的定义的应用试题,主要考查对定义中关键词“任意性”的理解
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
x |
2 |
3π |
4 |
1+x2 |
1-x2 |
1 |
2 |
1 |
3 |
1 |
4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源:不详 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com