精英家教网 > 高中数学 > 题目详情

【题目】空中有一气球,在它的正西方A点测得它的仰角为45°,同时在它南偏东60°B点,测得它的仰角为30°,已知AB两点间的距离为107米,这两个观测点均离地1米,则测量时气球离地的距离是_____米.

【答案】1

【解析】

依据题意作出图形,解三角形可得:ADPDBDPD,利用已知及在ADB中利用余弦定理可得:,问题得解。

解:如图:

PAD45°,∠PBD30°,∠ADB150°AEDFBG1

RtPAD中,ADPD

RtPBD中,BDPD

ADB中,由余弦定理得:AB2AD2+BD22ADBDcosADB

1072PD2+3PD22PDPD),

7PD21072,∴PD

∴测量时气球离地的距离是1(米).

故答案为:1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的多面体中, 平面平面

1)请在图中作出平面,使得,且,并说明理由;

2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知等差数列{an}中,a1=1a3=﹣3

)求数列{an}的通项公式;

)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列两个命题:命题p1a,b∈(0,+∞),当a+b=1时, + =4;命题p2:函数y=ln 是偶函数.则下列命题是真命题的是(
A.p1∧p2
B.p1∧(¬p2
C.(¬p1)∨p2
D.(¬p1)∨(¬p2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在平面直角坐标系xOy中,圆C的方程为,且圆C与y轴交于M,N两点(点N在点M的上方),直线与圆C交于A,B两点。

(1)若,求实数k的值。

(2)设直线AM,直线BN的斜率分别为,若存在常数使得恒成立?若存在,求出a的值.若不存在请说明理由。

(3)若直线AM与直线BN相较于点P,求证点P在一条定直线上。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是R上的偶函数,当x1 , x2∈(0,+∞)时,都有(x1﹣x2)[f(x1)﹣f(x2)]<0.设 ,则(
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C的对边分别是a,b,c,若向量 =(a+c,sinB), =(b﹣c,sinA﹣sinC),且 . (Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=tanAsinωxcosωx﹣cosAcos2ωx(ω>0),已知其图象的相邻两条对称轴间的距离为 ,现将y=f(x)的图象上各点向左平移 个单位,再将所得图象上各点的横坐标伸长为原来的2倍,得到函数y=g(x)的图象,求g(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为 ρcos(θ+ )﹣1=0,曲线C的参数方程是 (t为参数).
(1)求直线l和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,求 +

查看答案和解析>>

同步练习册答案