精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,平面侧面,且

(Ⅰ)求证:

(Ⅱ)若直线与平面所成角的大小为,求锐二面角的大小.

【答案】(Ⅰ)详见解析;(Ⅱ).

【解析】

(Ⅰ)先取的中点,连接,根据线面垂直的判定定理,证明侧面,进而可得出

(Ⅱ)根据(Ⅰ)的结果,得到底面,以点为原点,以所在直线分别为轴建立空间直角坐标系,设,表示出,再求出平面的一个法向量,根据直线与平面所成角的大小为,求出,再求出平面的一个法向量,由向量夹角公式,即可求出结果.

(Ⅰ)如图,取的中点,连接.

因为,所以.

由平面侧面,且平面侧面

平面.

平面,所以

因为三棱柱是直三棱柱,则底面,所以

,从而侧面

侧面,故

(Ⅱ)由(1)知底面,所以以点为原点,以所在直线分别为轴建立空间直角坐标系.

,则.

设平面的一个法向量,由,得.

,得,则.

设直线与平面所成的角为,则

所以

解得, 即.

又设平面的一个法向量为,同理可得.

设锐二面角的大小为,则

,得.

∴锐二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )

A.48B.72C.84D.168

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2019121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下表:

日期

121

122

123

124

125

温差

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的两组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2天数据的概率;

(2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求出y关于x的线性回归方程;并预报当温差为时,种子发芽数.

附:回归直线方程:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,动点轴上运动,过点作直线轴于点,延长至点,使的轨迹是曲线

1)求曲线的方程;

2)若是曲线上的两个动点,满足,证明:直线过定点;

3)若直线与曲线交于两点,且,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线在点处的切线方程;

)当时,

)求的单调区间;

)若在区间内单调递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为.过原点的直线与椭圆有两个不同的交点.

1)求椭圆长半轴长;

2)求最大值;

3)若直线分别与轴交于点,求证:的面积与的面积的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为降低空气污染,提高环境质量,政府决定对汽车尾气进行整治.某厂家生产甲、乙两种不同型号的汽车尾气净化器,为保证净化器的质量,分别从甲、乙两种型号的净化器中随机抽取100件作为样本进行产品性能质量评估,评估综合得分都在区间.已知评估综合得分与产品等级如下表:

根据评估综合得分,统计整理得到了甲型号的样本频数分布表和乙型号的样本频率分布直方图(图表如下).

甲型 乙型

(Ⅰ)从厂家生产的乙型净化器中随机抽取一件,估计这件产品为二级品的概率;

(Ⅱ)从厂家生产的乙型净化器中随机抽取3件,设随机变量为其中二级品的个数,求的分布列和数学期望;

(Ⅲ)根据图表数据,请自定标准,对甲、乙两种型号汽车尾气净化器的优劣情况进行比较.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,D为线段AC的中点.

1)求证:

2)求直线与平面所成角的余弦值;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)讨论零点的个数;

(3)当时,设恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案