精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线.

(1)求的普通方程和的直角坐标方程;

(2)若曲线交于两点,的中点为,点,求的值.

【答案】1的普通方程为的直角坐标方程为;(23.

【解析】

1)直接消去参数可得C1的普通方程;结合ρ2x2+y2xρcosθC2的直角坐标方程;(2)将两圆的方程作差可得直线AB的方程,写出AB的参数方程,与圆C2联立,化为关于t的一元二次方程,由参数t的几何意义及根与系数的关系求解.

1)曲线的普通方程为.

,得曲线的直角坐标方程为.

2)将两圆的方程作差得直线的方程为.

在直线上,设直线的参数方程为为参数),

代入化简得,所以.

因为点对应的参数为

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在区间上的值域;

2)是否存在实数,对任意给定的,在存在两个不同的使得,若存在,求出的范围,若不存在,说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程:在直角坐标系中,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程;

2)已知点,直线的极坐标方程为,它与曲线的交点为,与曲线的交点为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面平面.

(1)求证:平面平面

(2)若与平面所成的线面角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点,过作倾斜角互补的两条不同直线.

1)求抛物线的方程及准线方程;

2)设直线分别交抛物线两点(均不与重合,如图),记直线的斜率为正数,若以线段为直径的圆与抛物线的准线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线方程;

2)讨论函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,该椭圆与轴正半轴交于点,且是边长为的等边三角形.

1)求椭圆的标准方程;

2)过点任作一直线交椭圆于两点,平面上有一动点,设直线的斜率分别为,且满足,求动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中, PA=AB=BC=2. EPC的中点.

1)证明:

2)求三棱锥P-ABC的体积;

3 证明:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

同步练习册答案