精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若函数上具有单调性,求实数的取值范围;

(Ⅱ)若在区间上,函数的图象恒在图象上方,求实数的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)求出函数的对称轴,根据二次函数的单调性求出实数的取值范围;(2)问题转化为(m+1)x+m+2>0对任意x[1,1]恒成立h(x)=x2(m+1)x+m+2,通过讨论对称轴的范围,求出实数的取值范围.

试题解析:

(1)对称轴x=,且图象开口向上。

若函数g(x)[2,4]上具有单调性,

则满足24,

解得:m5m9;

(2)若在区间[1,1],函数y=g(x)的图象恒在y=2x9图象上方,

则只需:>2x9在区间[1,1]恒成立,

(m+1)x+m+2>0对任意x[1,1]恒成立,

h(x)=x2(m+1)x+m+2其图象的对称轴为直线x=,且图象开口向上

①当1m1,h(x)[1,1]上是减函数,

所以h(x)min=h(1)=2>0,

所以:m1;

②当1<<1,3<m<1,函数h(x)在顶点处取得最小值,

h(x)min=h()=m+2>0,解得:<m<1;

③当1m3,h(x)[1,1]上是增函数,

所以,h(x)min=h(1)=2m+4>0,解得:m&g;2,

此时,m

综上所述:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线x+y+m=0与圆x2+y2=4交于不同的两点A,B,O是坐标原点, ,则实数m的取值范围是(
A.[﹣2,2]
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足

(1)若λ= ,用向量 表示
(2)若| |=4,| |=3,且∠AOB=60°,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:y=ax+1﹣a(a∈R).若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线方程:①y=﹣2|x﹣1|;②y=x2;③(x﹣1)2+(y﹣1)2=1;④x2+3y2=4;则其中直线l的“绝对曲线”有(
A.①④
B.②③
C.②④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.已知购买一张彩票中奖的概率为 ,则购买1000张这种彩票一定能中奖
B.互斥事件一定是对立事件
C.如图,直线l是变量x和y的线性回归方程,则变量x和y相关系数在﹣1到0之间
D.若样本x1 , x2 , …xn的方差是4,则x1﹣1,x2﹣1,…xn﹣1的方差是3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.

若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;

商店记录了50天该商品的日需求量单位:件,整理得下表:

日需求量n

8

9

10

11

12

频数

10

10

15

10

5

假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;

若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求PA的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:

月工资
(单位:百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

男员工数

1

8

10

6

4

4

女员工数

4

2

5

4

1

1


(1)试由图估计该单位员工月平均工资;
(2)现用分层抽样的方法从月工资在[45,55)和[55,65)的两组所调查的男员工中随机选取5人,问各应抽取多少人?
(3)若从月工资在[25,35)和[45,55)两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生态公园的平面图呈长方形(如图),已知生态公园的长AB=8(km),宽AD=4(km),M,N分别为长方形ABCD边AD,DC的中点,P,Q为长方形ABCD边AB,BC(不含端点)上的一点.现公园管理处拟修建观光车道P﹣Q﹣N﹣M﹣P,要求观光车道围成四边形(如图阴影部分)的面积为15(km2),设BP=x(km),BQ=y(km),
(1)试写出y关于x的函数关系式,并求出x的取值范围;
(2)若B为公园入口,P,Q为观光车站,观光车站P位于线段AB靠近入口B的一侧.经测算,每天由B入口至观光车站P,Q乘坐观光车的游客数量相等,均为1万人,问如何确定观光车站P,Q的位置,使所有游客步行距离之和最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,记数列{an}的前n项和为Sn,数列{an2}的前n项和为Tn,且3TnSn2+2Snn∈N*

(Ⅰ)求a1的值;

(Ⅱ)求数列{an}的通项公式;

(Ⅲ)kt∈N*,且S1SkS1StSk成等比数列,求kt的值.

查看答案和解析>>

同步练习册答案