【题目】下列命题中正确的是( )
A. 有两个面平行,其余各面都是四边形的几何体叫棱柱
B. 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱
C. 用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台
D. 有两个面平行,其余各面都是平行四边形的几何体叫棱柱
科目:高中数学 来源: 题型:
【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.
(Ⅰ)求圆的标准方程;
(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB= .
(1)求cosβ的值;
(2)若点A的横坐标为 ,求点B的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在等腰梯形中,,,,点为的中点.将沿折起,使点到达的位置,得到如图所示的四棱锥,点为棱的中点.
(1)求证:平面;
(2)若平面平面,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.
(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;
(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少? (圆柱体积公式:,为圆柱的底面枳,为圆柱的高)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= sinxcosx+cos2x,锐角△ABC的三个角A,B,C所对的边分别为a,b,c. (Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若f(C)=1,求m= 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com