精英家教网 > 高中数学 > 题目详情
已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.
分析:(1)根据b2=ac,代入余弦定理求得cosB的值,进而求得B.
(2)根据正弦定理把边得问题转化为角的问题,进而求得sin2A=sin2B,判断出A-B=kπ或A+B=kπ+
π
2
推断出△ABC为等腰三角形或直角三角形.
解答:解:(1)∵b2=ac,∴cosB=
a2+c2-b2
2ac
2ac-ac
2ac
=
1
2

又∵0<B<π?∴0<B≤
π
3

(2)由正弦定理得,2RsinAcosA=2RsinBcosB
∴sin2A=sin2B,
∴2B=2kπ+2A或2B=(2k+1)π-2A
A-B=kπ或A+B=kπ+
π
2

又△ABC中,A+B+C=π,
得:0<A+B<π,且-π<A-B<π.
A-B=0或A+B=
π
2

也即△ABC为等腰三角形或直角三角形.
点评:本题主要考查了三角形的形状判断.解题的关键是利用正弦定理和余弦定理完成边角问题的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案