精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的四个顶点,过E的左焦点F且不与坐标轴垂直的直线lE交于AB两点,线段AB的垂直平分线mx轴,y轴分别交于MN两点,交线段AB于点C.

1)求E的方程;

2)设O为坐标原点,记的面积为的面积为,且,当时,求l的斜率的取值范围.

【答案】1;(2

【解析】

1)根据题意计算,得到椭圆方程.

2)设出直线方程,联立方程得到根与系数关系,计算点坐标,得到直线m的方程,进而计算坐标,计算表达式得到,解得答案.

1)由题意可得,半焦距,所以

所以E的方程.

2,设直线l的方程为.

联立方程组消去y,得

由韦达定理得

所以点C的坐标为

可得直线m的方程为

易得

所以

,所以

l的斜率的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学举行“新冠肺炎”防控知识闭卷考试比赛,总分获得一等奖、二等奖、三等奖的代表队人数情况如表,其中一等奖代表队比三等奖代表队多10人.该校政教处为使颁奖仪式有序进行,气氛活跃,在颁奖过程中穿插抽奖活动.并用分层抽样的方法从三个代表队中共抽取16人在前排就坐,其中二等奖代表队有5人(同队内男女生仍采用分层抽样)

名次

性别

一等奖

代表队

二等奖

代表队

三等奖

代表队

男生

30

女生

30

20

30

1)从前排就坐的一等奖代表队中随机抽取3人上台领奖,用X表示女生上台领奖的人数,求X的分布列和数学期望EX).

2)抽奖活动中,代表队员通过操作按键,使电脑自动产生[22]内的两个均匀随机数xy,随后电脑自动运行如图所示的程序框图的相应程序.若电脑显示“中奖”,则代表队员获相应奖品;若电脑显示“谢谢”,则不中奖.求代表队队员获得奖品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,中,为线段上一点,且,让绕直线翻折到且使

(Ⅰ)在线段上是否存在一点,使平面平面?请证明你的结论;

(Ⅱ)求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个微信群某次进行的抢红包活动中,群主所发红包的总金额为10元,被随机分配为2.49元、1.32元、2.19元、0.63元、3.37元共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当m=6时,求函数的极值;

2)若关于x的方程在区间[14]上有两个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足,an+1an+1a1a,则一定存在a,使数列中(

A.存在nN*,有an+1an+20

B.存在nN*,有(an+11)(an+21)<0

C.存在nN*,有

D.存在nN*,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,我们经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如某体育品牌的LOGO,可抽象为如图所示的轴对称的优美曲线,下列函数中,其图象大致可“完美”局部表达这条曲线的函数是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象的一条对称轴为,则下列结论中正确的是(

A.是最小正周期为的奇函数

B.图像的一个对称中心

C.上单调递增

D.先将函数图象上各点的纵坐标缩短为原来的,然后把所得函数图象再向左平移个单位长度,即可得到函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,且

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列的前项和为,求满足的所有正整数的值.

查看答案和解析>>

同步练习册答案