精英家教网 > 高中数学 > 题目详情

(本小题满分12分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投次:在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次.某同学在处的命中率,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为

0

2

3

4

5

(1) 求的值;(2) 求随机变量的数学期望;

(3) 试比较该同学选择都在处投篮得分超过分与选择上述方式投篮得分超过分的概率的大小.

 

【答案】

(1) ;

(2)

(3)该同学选择都在B处得分超过3分的概率大于该同学选择第一次在A处以后都在B处投得分超过3分的概率。

【解析】本题考查随机变量的分布列与数学期望,明确变量的含义,求出概率是解题的关键.

(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,ξ=0时,对应事件 ,根据分布列,即可求得q2的值;

(2)明确ξ=2、3、4、5,对应的事件,求出相应的概率,即可得到随机变量ξ的分布列与数学期望Eξ.

(3)因为设“同学选择A处投,以后再B处投得分超过3分”为事件A

设“同学选择都在B处投得分超过3分”为事件B

 

(1)                       (3’)

(2) 

        (9’)

(3)设“同学选择A处投,以后再B处投得分超过3分”为事件A

设“同学选择都在B处投得分超过3分”为事件B

 ,该同学选择都在B处得分超过3分的概率大于该同学选择第一次在A处以后都在B处投得分超过3分的概率。   (12’)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案