精英家教网 > 高中数学 > 题目详情
4.平行六面体ABCD-A'B'C'D'中,若$\overrightarrow{AC'}=x\overrightarrow{AB}+2y\overrightarrow{BC}-3z\overrightarrow{CC'}$,则x+y+z=(  )
A.$\frac{7}{6}$B.1C.$\frac{5}{6}$D.$\frac{2}{3}$

分析 由题意,$\overrightarrow{AC′}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CC′}$,结合条件,求出x,y,z,即可得出结论.

解答 解:由题意,$\overrightarrow{AC′}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CC′}$,
∵$\overrightarrow{AC'}=x\overrightarrow{AB}+2y\overrightarrow{BC}-3z\overrightarrow{CC'}$,
∴x=1,y=$\frac{1}{2}$,z=-$\frac{1}{3}$,
∴x+y+z=1+$\frac{1}{2}-\frac{1}{3}$=$\frac{7}{6}$.
故选:A.

点评 本题考查空间向量的基本定理及其意义,考查空间向量的加法运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,且$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\frac{5}{2}\overrightarrow b)$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,内角A、B、C的对边分别为a,b,c,若b,c,a成等比数列,且a=$\frac{1}{2}$b,则cosA=$\frac{5\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某商场为了了解某日旅游鞋的销售情况,抽取了部分顾客所购鞋的尺寸,将所得数据整理后,画出频率分布直方图如图所示.已知从左到右前3个小组的频率之比为1:2:3,第4小组与第5小组的频率分布如图所示,第2小组的频数为10,则第4小组顾客的人数是(  )
A.15B.20C.25D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}中,若a2+a4+a6=3,则a1+a3+a5+a7=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知∠ABC=90°,PA⊥平面ABC,若PA=AB=BC=1cm,则四面体P-ABC的外接球(顶点都在球面上)的表面积为3πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知各项均不为零的数列{an}满足an+12=anan+2,且32a8-a3=0,记Sn是数列{an}的前n项和,则$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$的值为(  )
A.-$\frac{21}{8}$B.$\frac{21}{8}$C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面表述不正确的是(  )
A.终边在x轴上角的集合是{α|α=kπ,k∈Z}
B.终边在y轴上角的集合是$\{α|α=\frac{π}{2}+kπ,k∈Z\}$
C.终边在坐标轴上的角的集合是$\{α|α=k•\frac{π}{2},k∈Z\}$
D.终边在直线y=-x上角的集合是 $\{α|α=\frac{π}{4}+2kπ,k∈Z\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={0,2,4,6,8,10},B={4,8},则∁AB=(  )
A.{4,8}B.{0,2,6,10}C.x>5D.x>3

查看答案和解析>>

同步练习册答案