【题目】4名运动员参加一次乒乓球比赛,每名运动员都赛场并决出胜负.设第位运动员共胜场,负场,则错误的结论是( )
A.
B.
C. 为定值,与各场比赛的结果无关
D. 为定值,与各场比赛结果无关
科目:高中数学 来源: 题型:
【题目】设A,B分别是双曲线的左右顶点,设过的直线PA,PB与双曲线分别交于点M,N,直线MN交x轴于点Q,过Q的直线交双曲线的于S,T两点,且,则的面积( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的极值;
(2)设函数在处的切线方程为,若函数是上的单调增函数,求的值;
(3)是否存在一条直线与函数的图象相切于两个不同的点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,,分别是椭圆的左,右焦点,点P是椭圆E上一点,满足轴,.
(1)求椭圆E的离心率;
(2)过点的直线l与椭圆E交于两点A,B,若在椭圆B上存在点Q,使得四边形OAQB为平行四边形,求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣4x+3=0,过原点的直线l与圆C有公共点.
(1)求直线l斜率k的取值范围;
(2)已知O为坐标原点,点P为圆C上的任意一点,求线段OP的中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率为且四个顶点构成面积为的菱形.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点且斜率不为0的直线与椭圆交于,两点,记中点为,坐标原点为,直线交椭圆于,两点,当四边形的面积为时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】6月12日,上海市发布了《上海市生活垃圾分类投放指南》,将人们生活中产生的大部分垃圾分为七大类.某幢楼前有四个垃圾桶,分别标有“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”,小明同学要将鸡骨头(湿垃圾)、贝壳(干垃圾)、指甲油(有害垃圾)、报纸(可回收物)全部投入到这四个桶中,若每种垃圾投放到每个桶中都是等可能的,那么随机事件“4种垃圾中至少有2种投入正确的桶中”的概率是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com