精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的偶函数,当x∈[0,+∞)时,f(x)=2x﹣2,则不等式f(log2x)>0的解集为( )
A.(0,
B.( ,1)∪(2,+∞)
C.(2,+∞)
D.(0, )∪(2,+∞)

【答案】D
【解析】解:当x∈[0,+∞)时,f(x)=2x﹣2,

∴f(1)=0,

又∵当x∈[0,+∞)时,f(x)为增函数,又是定义在R上的偶函数,

故f(x)>0时,x>1,或x<﹣1,

故f(log2x)>0时,log2x>1,或log2x<﹣1,

解得:x∈(0, )∪(2,+∞),

所以答案是:D

【考点精析】通过灵活运用奇偶性与单调性的综合和对数函数的单调性与特殊点,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性;过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0}.若A∪B=A,A∩C=C,求实数a,m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC﹣A′B′C′中,若AA′=2AB,则异面直线AB′与BC′所成角的余弦值为( )

A.0
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+2x﹣4y+3=0.
(1)若不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;
(2)从圆C外一点P(x,y)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“ ≥2”的充分必要条件
C.命题“若x2﹣3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2﹣3x+2≠0”
D.命题p:?x∈R,使得x2+x﹣1<0,则¬p:?x∈R,使得x2+x﹣1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥EC.

(1)求证:OE⊥FC:
(2)若 时,求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=

(1)画出函数f(x)的图象;
(2)求f(f(3))的值;
(3)求f(a2+1)(a∈R)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人们生活水平的提高,越来越注重科学饮食.营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,每天需要同时食用食物A和食物B多少kg?最低花费是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0;
②f( )=1;
③对任意的正实数x,y,都有f(xy)=f(x)+f(y).
(1)求证:f( )=﹣f(x);
(2)求证:f(x)在定义域内为减函数;
(3)求满足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.

查看答案和解析>>

同步练习册答案