【题目】已知,分别是双曲线的左顶点、右焦点,过的直线与的一条渐近线垂直且与另一条渐近线和轴分别交于,两点.若,则的离心率是( )
A. B. C. D.
【答案】D
【解析】
由已知条件设出直线l的方程,与y=﹣x联立,求P点坐标,将x=0带入直线l,求Q点坐标,由AP⊥AQ,知kAPkAQ,由此求离心率.
∵A,F分别是双曲线的左顶点、右焦点,
∴A(﹣a,0)F(c,0),
∵过F的直线l与C的一条渐近线垂直,
且与另一条渐近线和y轴分别交于P,Q两点,
∴直线l的方程为:y=﹣,
直线l:y=﹣与y=﹣x联立:
,解得P点
将x=0带入直线l:y=﹣,得Q(0,),
∵AP⊥AQ,∴kAPkAQ=×=﹣1,
化简得b2﹣ac﹣a2=﹣c2,
把b2=c2﹣a2代入,得2c2﹣2a2﹣ac=0
同除a2得2e2﹣2﹣e=0,
∴e=,或e=(舍).
故选:D.
科目:高中数学 来源: 题型:
【题目】设有一组圆.下列四个命题正确的是( )
A. 存在,使圆与轴相切
B. 存在一条直线与所有的圆均相交
C. 存在一条直线与所有的圆均不相交
D. 所有的圆均不经过原点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产甲、乙两种产品所得的利润分别为和(万元),事先根据相关资料得出它们与投入资金(万元)的数据分别如下表和图所示:其中已知甲的利润模型为,乙的利润模型为.(为参数,且).
(1)请根据下表与图中数据,分别求出甲、乙两种产品所得的利润与投入资金(万元)的函数模型
(2)今将万资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于万元.设对乙种产品投入资金(万元),并设总利润为(万元),如何分配投入资金,才能使总利润最大?并求出最大总利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)
已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最
小值为,离心率为。
(I)求椭圆的方程;
(Ⅱ)过点(1,0)作直线交于、两点,试问:在轴上是否存在一个定点,使为定值?若存在,求出这个定点的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,若存在区间,使得称区间为函数的“和谐区间”.
(1)请直接写出函数的所有的“和谐区间”;
(2)若为函数的一个“和谐区间”,求的值;
(3)求函数的所有的“和谐区间”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(且)
(1)判断并证明的奇偶性;
(2)求使的的取值范围;
(3)若,是否存在实数,使得有三个不同的零点,若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)讨论函数f(x)=ex的单调性,并证明当x>0时,(x-2)ex+x+2>0.
(2)证明:当a∈[0,1) 时,函数g(x)= (x>0) 有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com