精英家教网 > 高中数学 > 题目详情

【题目】(注意:在试题卷上作答无效)

已知数列中,.

)设,求数列的通项公式;

)求使不等式成立的的取值范围.

【答案】

【解析】

试题(1)由得,,然后令进行替换得到关系式,然后运用待定系数法将其整理为,即可求出的通项公式,进而求出数列的通项公式;

2)先求出时的的取值范围,然后用数学归纳法对其进行证明,即证明当时,,然后当时,令,由,得;易知当时,不满足条件,进而可确定参数的取值范围.

试题解析:(1)由已知有:,所以,所以,所以,所以是一个首项为,公比为4的等比数列,,即

2)由,得.下面用数学归纳法证明:当时,

时,,命题成立;

假设当时,,那么当时,

①②可知,当时,;当时,令,由,得;当时,;当时,,且

所以,而当时,.不满足题意应舍去.

综上所述,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在棱长为的正方体中,的中点,上任意一点,上两动点,且的长为定值,则下面四个值中不是定值的是(

A.到平面的距离B.直线与平面所成的角

C.三棱锥的体积D.二面角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线方程是,求函数上的值域;

(2)当时,记函数,若函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆心在轴上,半径为2的圆位于轴右侧,且与直线相切.

(1)求圆的方程;

(2)在圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个命题与自然数n有关,如果当)时该命题成立,则可得时该命题也成立,若已知时命题不成立,则下列说法正确的是______(填序号)

1时,该命题不成立;

2时,该命题不成立;

3时,该命题可能成立;

4时,该命题可能成立也可能不成立,但若时命题成立,则对任意,该命题都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调等比数列中,首项为 ,其前n项和是,且成等差数列,数列满足条件

() 求数列的通项公式;

() ,记数列的前项和 .

①求 ;②求正整数,使得对任意,均有 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中真命题是  

A. 同垂直于一直线的两条直线互相平行

B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱

C. 过空间任一点与两条异面直线都垂直的直线有且只有一条

D. 过球面上任意两点的大圆有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图中,,若以为焦点的双曲线的渐近线经过点,则该双曲线的离心率为

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数在点处的切线方程;

(2)若,求函数的单调区间;

(3)若函数有两个极值点,若过两点的直线轴的交点在曲线上,求的值.

查看答案和解析>>

同步练习册答案