£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ|x-5|+|x+3|¡Ý10µÄ½â¼¯ÊÇ
£¨-¡Þ£¬-4]¡È[6£¬+¡Þ£©
£¨-¡Þ£¬-4]¡È[6£¬+¡Þ£©
£®
B£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚ¼«×ø±êϵÖУ¬Ô²¦Ñ=-2sin¦ÈµÄÔ²Ðĵļ«×ø±êÊÇ
£¨1£¬
3¦Ð
2
£©
£¨1£¬
3¦Ð
2
£©
£®
C£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬ÒÑÖªÔ²ÖÐÁ½ÌõÏÒABÓëCDÏཻÓÚµãF£¬EÊÇABÑÓ³¤ÏßÉÏÒ»µã£¬ÇÒDF=CF=2
2
£¬BE=1£¬BF=2£¬ÈôCEÓëÔ²ÏàÇУ¬ÔòÏ߶ÎCEµÄ³¤Îª
7
7
£®
·ÖÎö£ºA£®ÎÒÃÇÀûÓÃÁãµã·Ö¶Î·¨£¬ÎÒÃÇ·ÖÀàÌÖÂÛÈýÖÖÇé¿öϲ»µÈʽµÄ½â£¬×îºó½«ÈýÖÖÇé¿öÏÂxµÄÈ¡Öµ·¶Î§²¢ÆðÀ´£¬¼´¿ÉµÃµ½´ð°¸£®
B£®°ÑÔ²µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬Çó³öÔ²ÐĵÄÖ±½Ç×ø±ê£¬ÔÙ°ÑËü»¯Îª¼«×ø±ê£®
C£®ÓÉÏཻÏÒ¶¨ÀíµÃDF•FC=AF•BFÇó³öAFµÄ³¤£¬ÔÙÀûÓÃÇиÀíÇó³öCE¼´¿É£®
½â´ð£º½â£ºA£ºµ±x£¼-3ʱ
²»µÈʽ|x-5|+|x+3|¡Ý10¿É»¯Îª£º-£¨x-5£©-£¨x+3£©¡Ý10
½âµÃ£ºx¡Ü-4
µ±-3¡Üx¡Ü5ʱ
²»µÈʽ|x-5|+|x+3|¡Ý10¿É»¯Îª£º-£¨x-5£©+£¨x+3£©=8¡Ý10ºã²»³ÉÁ¢
µ±x£¾5ʱ
²»µÈʽ|x-5|+|x+3|¡Ý10¿É»¯Îª£º£¨x-5£©+£¨x+3£©¡Ý10
½âµÃ£ºx¡Ý6
¹Ê²»µÈʽ|x-5|+|x+3|¡Ý10½â¼¯Îª£º£¨-¡Þ£¬-4]¡È[6£¬+¡Þ£©£®
B£ºÔ²¦Ñ=-2sin¦È ¼´ ¦Ñ2=-2¦Ñsin¦È£¬¼´ x2+y2+2y=0£¬¼´x2+£¨y+1£©2=1£®
±íʾÒÔ£¨0£¬-1£©ÎªÔ²ÐÄ£¬°ë¾¶µÈÓÚ1µÄÔ²£¬¹ÊÔ²Ðĵļ«×ø±êΪ£¨1£¬
3¦Ð
2
£©£®
C£ºÓÉÌâÒ⣬DF=CF=2
2
£¬BE=1£¬BF=2£¬
ÓÉDF•FC=AF•BF£¬µÃ2
2
2
2
=AF•2£¬
¡àAF=4£¬ÓÖBF=2£¬BE=1£¬
¡àAE=7£»
ÓÉÇиîÏ߶¨ÀíµÃCE2=BE•EA=1¡Á7=7£®
¡àCE=
7
£®
¹Ê´ð°¸Îª£º£¨-¡Þ£¬-4]¡È[6£¬+¡Þ£©£»£¨1£¬
3¦Ð
2
£©£¨´ð°¸²»Î¨Ò»£©£»
7
£®
µãÆÀ£ºA¡¢±¾Ð¡Ì⿼²éµÄ֪ʶµãÊǾø¶ÔÖµ²»µÈʽµÄ½â·¨£¬ÆäÖÐÀûÓÃÁãµã·Ö¶Î·¨½øÐзÖÀàÌÖÂÛ£¬½«¾ø¶ÔÖµ²»µÈʽת»¯ÎªÕûʽ²»µÈʽÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£®
B¡¢±¾Ð¡ÌâÖ÷Òª¿¼²éµãµÄ¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯£¬ÊôÓÚ»ù´¡Ì⣮
C¡¢±¾Ð¡Ì⿼²éÖ±ÏßÓëÔ²µÄλÖùØϵ£¬¿¼²é¼ÆËãÄÜÁ¦£¬»ù±¾ÖªÊ¶ÕÆÎÕµÄÇé¿ö£¬Êdz£¿¼ÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ|x+1|¡Ý|x+2|µÄ½â¼¯Îª
 
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩ÈçͼËùʾ£¬¹ý¡ÑOÍâÒ»µãP×÷Ò»ÌõÖ±ÏßÓë¡ÑO½»ÓÚA£¬BÁ½µã£¬
ÒÑÖªPA=2£¬µãPµ½¡ÑOµÄÇÐÏß³¤PT=4£¬ÔòÏÒABµÄ³¤Îª
 
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÈôÖ±Ïß3x+4y+m=0ÓëÔ²
x=1+cos¦È
y=-2+sin¦È
£¨¦ÈΪ²ÎÊý£©Ã»Óй«¹²µã£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÈýÑ¡Ò»£¬¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
£¨1£©£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚÖ±½Ç×ø±êϵÖÐÔ²CµÄ²ÎÊý·½³ÌΪ
x=1+2cos¦È
y=
3
+2sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÔòÔ²CµÄÆÕͨ·½³ÌΪ
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4
£®
£¨2£©£¨²»µÈʽѡ½²Ñ¡×öÌ⣩É躯Êýf£¨x£©=|2x+1|-|x-4|£¬Ôò²»µÈʽf£¨x£©£¾2µÄ½â¼¯Îª
{x|x£¼-7»òx£¾
5
3
}
{x|x£¼-7»òx£¾
5
3
}
£®
£¨3£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩ ÈçͼËùʾ£¬µÈÑüÈý½ÇÐÎABCµÄµ×±ßAC³¤Îª6£¬ÆäÍâ½ÓÔ²µÄ°ë¾¶³¤Îª5£¬ÔòÈý½ÇÐÎABCµÄÃæ»ýÊÇ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨A£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬CDÊÇÔ²OµÄÇÐÏߣ¬ÇеãΪC£¬µãBÔÚÔ²OÉÏ£¬BC=2£¬¡ÏBCD=30¡ã£¬ÔòÔ²OµÄÃæ»ýΪ
4¦Ð
4¦Ð
£»
£¨B£©£¨¼«×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩¼«×ø±ê·½³Ì¦Ñ=2sin¦È+4cos¦È±íʾµÄÇúÏ߽ئÈ=
¦Ð
4
(¦Ñ¡ÊR)
ËùµÃµÄÏÒ³¤Îª
3
2
3
2
£»
£¨C£©£¨²»µÈʽѡ×öÌ⣩  ²»µÈʽ|2x-1|£¼|x|+1½â¼¯ÊÇ
£¨0£¬2£©
£¨0£¬2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®Èçͼ£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬PAÊÇ¡ÑOµÄÇÐÏߣ¬PB½»ACÓÚµãE£¬½»¡ÑOÓÚµãD£®ÈôPA=PE£¬¡ÏABC=60¡ã£¬PD=1£¬PB=9£¬ÔòEC=
4
4
£®
B£® PΪÇúÏßC1£º
x=1+cos¦È
y=sin¦È
£¬£¨¦ÈΪ²ÎÊý£©ÉÏÒ»µã£¬ÔòËüµ½Ö±ÏßC2£º
x=1+2t
y=2
£¨tΪ²ÎÊý£©¾àÀëµÄ×îСֵΪ
1
1
£®
C£®²»µÈʽ|x2-3x-4|£¾x+1µÄ½â¼¯Îª
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁжþÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣®£©
£¨A£©£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©ÇúÏß
x=cos¦Á
y=a+sin¦Á
£¨¦ÁΪ²ÎÊý£©ÓëÇúÏߦÑ2-2¦Ñcos¦È=0µÄ½»µã¸öÊýΪ
 
¸ö£®
£¨B£©£¨Ñ¡ÐÞ4-5²»µÈʽѡ½²£©Èô²»µÈʽ|x+1|+|x-3| ¡Ýa+
4
a
¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸