精英家教网 > 高中数学 > 题目详情
在△ABC中,a、b、c分别是角A、B、C的对边,且A=
π
3

(1)若a=1,面积S△ABC=
3
4
,求b+c的值;
(2)求
a
b-c
•sin(
π
3
-C)
的值(注意,此问只能使用题干的条件,不能用(1)问的条件).
分析:(1)由A的度数求出sinA的值,利用三角形的面积公式表示出三角形ABC的面积,将sinA以及已知面积代入求出bc的值,利用余弦定理表示出cosA,将a及cosA的值代入,整理得到b2+c2的值,利用完全平方公式即可求出b+c的值;
(2)利用正弦定理化简已知等式,将A的度数代入,利用两角和与差的正弦函数公式化简,约分即可得到结果.
解答:解:(1)∵A=
π
3
,S△ABC=
1
2
bcsinA=
3
4
bc=
3
4

∴bc=1,
由余弦定理得:
1
2
=cosA=
b2+c2-a2
2bc
=
b2+c2-1
2

整理得:b2+c2=2,
∴(b+c)2=b2+c2+2bc=4,
∴b+c=2;
(2)由正弦定理知
a
b-c
•sin(
π
3
-C)=
sinA
sinB-sinC
•sin(
π
3
-C)
=
3
2
sin(
π
3
-C)
sin(
3
-C)-sinC
=
3
2
sin(
π
3
-C)
3
2
cosC-
1
2
sinC
=
3
2
sin(
π
3
-C)
sin(
π
3
-C)
=
3
2
点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案