【题目】已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),且函数的最小正周期为.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0,]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求下列曲线的标准方程:
(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.
(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是正项等比数列,令Sn=lga1+lga2+…+lgan , n∈N* , 若存在互异的正整数m,n,使得Sm=Sn , 则Sm+n= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段,下表是初赛成绩(得分均为整数,满分为100分)的频率分布表.
分组(分数段) | 频数(人数) | 频率 |
0.16 | ||
17 | ||
| 19 | 0.38 |
| ||
合计 | 50 | 1 |
(Ⅰ)求频率分布表中, , , 的值;
(Ⅱ)决赛规则如下:参加决赛的每位同学依次口答3道判断题,答对3道题获得一等奖,答对2道题获得二等奖,答对1道题获得三等奖,否则不得奖.若某同学进入决赛,且其每次答题回答正确与否均是等可能的,试列出他回答问题的所有可能情况,并求出他至少获得二等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= .
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足 .
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com