精英家教网 > 高中数学 > 题目详情
11.已知直线l:y=2x+n,n∈R,圆M的圆心在y轴,且过点(1,1).
(1)当n=-2时,若圆M与直线l相切,求该圆的方程;
(2)设直线l关于y轴对称的直线为l′,试问直线l′与抛物线N:x2=6y是否相切?如果相切,求出切点坐标;如果不想切,请说明理由.

分析 (1)利用待定系数法,求出圆的圆心与半径即可得到圆的标准方程.
(2)求出对称直线的方程与抛物线联立方程组,利用相切求解即可.

解答 解:(1)设M的方程为x2+(y-b)2=r2
(1,1)代入,可得1+(1-b)2=r2,①
∵直线l与圆M相切,∴$\frac{|-b-2|}{\sqrt{5}}$=r,②
由①②可得b=3或$\frac{1}{2}$,
∴M的方程为x2+(y-3)2=5,或x2+(y-$\frac{1}{2}$)2=$\frac{5}{4}$,
(2)因为直线l的方程为y=2x+n
所以直线l′的方程为y=-2x+n.
与抛物线联立得x2+12x-6n=0.
△=144+24n
①当n=-6,即△=0时,直线l′与抛物线C相切;,切点坐标为(-6,6)
②当n≠-6,即△≠0时,直线l′与抛物线C不相切.

点评 本题考查直线与抛物线的位置关系,圆的方程的求法,以及对称知识的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}x+2y≤2\\ x≥0\\ y≥0\end{array}\right.$,则当y≤ax+a-1恒成立时,实数a的取值范围是a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=log2(3cosx+1),x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设两条直线x+y-2=0,3x-y-2=0的交点为M,若点M在圆(x-m)2+y2=5内,则实数m的取值范围为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆x2+y2=a2的切线,切点为M,延长FM交双曲线右支于点P,若M为FP的中点,则双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={2,3},B={x|x2-5x+6=0},则A∩B=(  )
A.{x=2,x=3}B.{(2,3)}C.{2,3}D.2,3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=(  )
A.B.{0}C.{2}D.{-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且${a_n}=\sqrt{{S_{2n-1}}}({n∈{N^*}})$.若不等式$\frac{λ}{{{a_{n+1}}}}≤\frac{n+8}{n}$对任意n∈N*恒成立,则实数λ的最大值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.六名同学A、B、C、D、E、F举行象棋比赛,采取单循环赛制,即参加比赛的每两个人之间仅赛一局.第一天,A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过.那么F在第一天参加的比赛局数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案