精英家教网 > 高中数学 > 题目详情
17.二项式($\frac{1}{x}$+2)5的展开式中,第3项的系数是40.

分析 根据通项公式求得展开式中的第3项,可得第3项的系数.

解答 解:二项式($\frac{1}{x}$+2)5的展开式中,第3项为 T3=${C}_{5}^{2}$•${(\frac{1}{x})}^{3}$•22=40•x-3
故第3项的系数是40,
故答案为:40.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.3位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有8种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列有关线性回归分析的四个命题中
①线性回归直线未必过样本数据的中心点$(\overline x,\overline y)$;
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数r>0时,则两个变量正相关;
④如果两个变量的相关性越强,则相关性系数r就越接近于1.
其中真命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若sin3A=sin3B,则A、B的关系是(  )
A.A=BB.A+B=$\frac{π}{3}$
C.A=B或A+B=$\frac{π}{3}$D.A+B=$\frac{π}{3}$或|A-B|=$\frac{2π}{3}$或A=B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”,若f(f(x))=x,则称x为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f(f(x))=x}
(1)证明:A⊆B;
(2)设f(x)=x2+ax+b,若A={-1,3},求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.判断下列函数的奇偶性.
(1)f(x)=$\frac{\sqrt{4-{x}^{2}}}{x}$;
(2)f(x)=(x+1)$\sqrt{\frac{1-x}{1+x}}$;
(3)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+1(x>0)}\\{{x}^{2}+2x-1(x<0)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(1)0.50.5+0.1-2-3π0
(2)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log89•log278.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点(1,2)在函数f(x)=ax(a>0,且a≠1)的图象上,等比数列{an}的前n项和为f(n)-$\frac{1}{2}$c,数列{cn}(cn>0)的首项为c,且其前n项和Tn满足 2Tn=cn2+n-1(n∈N*).
(1)求数列{an}和{cn}的通项公式;
(2)若bn=$\frac{{2{c_n}+3}}{{({2n+1})({2n+3}){a_n}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设p:f(x)=x2+2mx+1在(0,+∞)内单调递增,q:m≥-5,则p是q的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案