精英家教网 > 高中数学 > 题目详情
13.命题:“若$\sqrt{x}$>1,则lnx>0”的否命题为(  )
A.若$\sqrt{x}$>1,则lnx≤0B.若$\sqrt{x}$≤1,则lnx>0C.若$\sqrt{x}$≤1,则lnx≤0D.若lnx>0,则$\sqrt{x}$>1

分析 根据已知中的原命题,结合否命题的定义,可得答案.

解答 解:命题:“若$\sqrt{x}$>1,则lnx>0”的否命题为命题:“若$\sqrt{x}$≤1,则lnx≤0”,
故选:C

点评 本题考查的知识点是四种命题,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.以下说法正确的有②④
①若p:?x0∈R,x${\;}_{0}^{2}$-x0>0,则¬p:?x∈R,x2-x>0
②已知m,n是两条不同的直线,α,β是两个不同是平面,若m⊥α,m∥n,n∥β,则α⊥β
③“m>2”是“?k∈R,y=kx+2k与x2+y2+mx=0都有公共点”的充分不必要条件
④在△ABC中,AB=AC=3,BC=2,p是△ABC内部的一点,若$\frac{{S}_{△PAB}}{\overrightarrow{PA}•\overrightarrow{PB}}$=$\frac{{S}_{△PBC}}{\overrightarrow{PB}•\overrightarrow{PC}}$=$\frac{{S}_{△PAC}}{\overrightarrow{PA}•\overrightarrow{PC}}$(S△PAB,S△PBC,S△PAC表示相应三角形的面积),则PA+PB+PC=2$\sqrt{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,a、b、c分别为A、B、C所对的边,且2acosB+bcosA=2c,则△ABC是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.斜三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知两个圆O1和O2,它们的半径分别是2和4,且|O1O2|=8,若动圆M与圆O1内切,又与O2外切,则动圆圆心M的轨迹方程是(  )
A.B.椭圆C.双曲线一支D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设点M(3,t),若在圆O:x2+y2=6上存在两点A,B,使得∠AMB=90°,则t的取值范围是-$\sqrt{3}$≤t≤$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,若z=a(4x+2y)+b(a>0,b>0)的最大值为7,则$\frac{6}{a}$+$\frac{1}{b}$的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题p:?x∈R,2${\;}^{{x}^{2}-1}$<$\frac{1}{4}$,命题q:若M为曲线y2=4x2上一点,A($\frac{5}{2}$,0),则|MA|的最小值为$\sqrt{5}$,那么下列命题为真命题的是(  )
A.(¬p)∧(¬q)B.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足$\left\{\begin{array}{l}{2x+y-7≤0}\\{x≥2}\\{y≥1}\end{array}\right.$,则目标函数z=-x+y的最小值为(  )
A.-3B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点D(0,1),一个焦点与短轴的两端点连线互相垂直.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过$M(0,-\frac{1}{3})$的直线l交椭圆C于A,B两点,判断点D与以AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案