精英家教网 > 高中数学 > 题目详情
(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
12
-14

(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b
分析:A.要证AD 的延长线平分∠CDE,即证∠EDF=∠CDF,根据A,B,C,D 四点共圆,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,从而得解.
B.(1)根据所给的矩阵求这个矩阵的逆矩阵,可以首先求出ad-bc的值,再代入逆矩阵的公式,求出结果.
(2)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.
C.曲线C为:x2+y2-4y=0,圆心(0,2),半径为2,由此能求出直线被曲线C载得的线段长度.
D.对左边变形
1
2
1
2a
+
1
2b
)+
1
2
1
2b
+
1
2c
)+
1
2
1
2c
+
1
2a
)后两项应用基本不等式,得到三个不等式后相加即得.
解答:解:A:设F为AD 延长线上一点,
∵A,B,C,D 四点共圆,∴∠ABC=∠CDF,
∵AB=AC,∴∠ABC=∠ACB,
∵∠ADB=∠ACB,∴∠ADB=∠CDF,
∵对顶角∠EDF=∠ADB,∴∠EDF=∠CDF,
故AD的延长线平分∠CDE.
B:解:(1)ad-bc=4+2=6,
A-1=
d
ad-bc
-b
ad-bc
-c
ad-bc
a
ad-bc
=
2
3
-
1
3
1
6
1
6

∴A-1=
2
3
-
1
3
1
6
1
6

(2)矩阵A的特征多项式为f(λ)=
.
λ-1-2
1λ-4
.
2-5λ+6,
令f(λ)=0,得λ1=2,λ2=3,
当λ1=2时,得
a1
=
2
1
,当λ2=3时,得
a2
=
1
1

所以矩阵A属于特征值2的一个特征向量为
2
1

矩阵M属于特征值3的一个特征向量为
1
1

C:曲线C为:x2+y2-4y=0,圆心(0,2),半径为2,
直线l为:
3
x-y+1=0,圆心到直线的距离为:d=
|-2+1|
2
=
1
2

直线被曲线C载得的线段长度为:2
4-
1
4
=
17

D:证明:∵a、b、c均为实数,
1
2
1
2a
+
1
2b
)≥
1
2
ab
1
a+b
,当a=b时等号成立;
1
2
1
2b
+
1
2c
)≥
1
2
bc
1
b+c

当b=c时等号成立;
1
2
1
2c
+
1
2a
)≥
1
2
ca
1
c+a

三个不等式相加即得
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

当且仅当a=b=c时等号成立.
点评:A考查直线与圆的位置关系,B考查逆矩阵的求法和矩阵的特征值和特征向量的求法,C考查极坐标标方程和参数方程的应用,D考查不等式的证明.都是基础题,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宿迁一模)【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,已知AB,CD是圆O的两条弦,且AB是线段CD的 垂直平分线,若AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换(本小题满分10分)
已知矩阵M=
21
1a
的一个特征值是3,求直线x-2y-3=0在M作用下的新直线方程.
C.选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系xOy中,已知曲线C的参数方程是
x=cosα
y=sinα+1
(α是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲(本小题满分10分)
已知关于x的不等式|ax-1|+|ax-a|≥1的解集为R,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省普通高中招生考试数学 题型:解答题

【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,
若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤.
A.   选修4-1:几何证明选讲(本小题满分10分)
  如图,圆与圆内切于点,其半径分别为
的弦交圆于点不在上),
求证:为定值。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三第一学期第二次阶段考试数学 题型:解答题

【选做题】本题包括A,B,C,D四小题,请选定其中两题作答,每小题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.

A选修4—1:几何证明选讲

自圆O外一点P引圆的一条切线PA,切点为AMPA的中点,

过点M引圆O的割线交该圆于BC两点,且∠BMP=100°,

BPC=40°,求∠MPB的大小.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学1(江苏卷)解析版 题型:解答题

 【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答

             若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤.

A选修4-1:几何证明选讲

   如图,圆与圆内切于点,其半径分别为

的弦交圆于点不在上),

求证:为定值。

B选修4-2:矩阵与变换

已知矩阵,向量,求向量,使得

C选修4-4:坐标系与参数方程

在平面直角坐标系中,求过椭圆为参数)的右焦点且与直线为参数)平行的直线的普通方程。

D.选修4-5:不等式选讲

解不等式:

 

查看答案和解析>>

同步练习册答案