精英家教网 > 高中数学 > 题目详情
11.已知△ABC的三边长分别为AB=5,BC=4,AC=3,M是AB边上的点,P是平面ABC外一点.给出下列四个命题:
①若PM⊥平面ABC,且M是AB边中点,则有PA=PB=PC;
②若PC=5,PC⊥平面ABC,则△PCM面积的最小值为$\frac{15}{2}$;
③若PB=5,PB⊥平面ABC,则三棱锥P-ABC的外接球体积为$\frac{{125\sqrt{2}}}{6}π$;
④若PC=5,P在平面ABC上的射影是△ABC内切圆的圆心,则三棱锥P-ABC的体积为$2\sqrt{23}$;
其中正确命题的序号是①④(把你认为正确命题的序号都填上).

分析 运用三棱锥的棱长的关系,求解线段,面积,体积,把三棱锥镶嵌在长方体中,求解外接圆的半径,

解答 解:对于①,∵△ABC的三边长分别为AB=5,BC=4,AC=3,
∴PM丄平面ABC,且M是AB边中点,∴MA=MB=MC
∴Rt△PMA≌Rt△PMB≌Rt△PMC,∴PA=PB=PC,∴①正确,
对于②,∵当PC⊥面ABC,∴△PCM面积=$\frac{1}{2}$×PC×CM=$\frac{1}{2}$×5×CM
又因为CM作为垂线段最短=$\frac{12}{5}$,△PCM面积的最小值为$\frac{1}{2}×5×\frac{12}{5}$=6,∴②不正确.
对于③,∵若PB=5,PB⊥平面ABC,AB=5,BC=4,AC=3,
∴三棱锥P-ABC的外接球可以看做3,4,5为棱长的长方体,∴2R=5$\sqrt{2}$,∴体积为$\frac{125\sqrt{2}}{3}π$,故③不正确.
对于④,∵△ABC的外接圆的圆心为O,PO⊥面ABC,∵P2=PO2+OC2,r=$\frac{3+4-5}{2}$=1,
OC=$\sqrt{2}$,PO2=25-2=23,PO=$\sqrt{23}$,
$\frac{1}{3}×\frac{1}{2}$××3×4×$\sqrt{23}$=2$\sqrt{23}$,故④正确
故答案为:①④

点评 本题考查了空间直线,几何体的性质,位置关系,求解面积,夹角问题,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,且将全班25人的成绩记为Ai(i=1,2,..,25),由右边的程序运行后,输出n=10.据此解答如下问题:

(1)求茎叶图中破损处分数在[50,60),[70,80),[80,90)各区间段的频数;
(2)利用频率分布直方图估计该班的数学测试成绩的众数,中位数,平均数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点P(-1,2)且垂直于直线2x-3y+9=0的直线方程是(  )
A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+5=0D.2x-3y+8=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y=\sqrt{{{log}_{\frac{1}{2}}}(x-1)}$的定义域是(  )
A.(1,+∞)B.(1,2]C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{x+1}{{e}^{x}-1}$+x(x∈(0,+∞),且f(x)在x0处取得最小值,则以下各式正确的序号为(  )
①f(x0)<x0+1              ②f(x0)=x0+1             ③f(x0)>x0+1               ④f(x0)<3                    ⑤f(x0)>3.
A.①④B.②④C.②⑤D.③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD=$\frac{1}{2}$BC,$\overrightarrow{BE}$=$\frac{1}{4}$$\overrightarrow{BC}$.
(1)求证:DE⊥平面PAC;
(2)若直线PE与平面PAC所成角的正弦值为$\frac{\sqrt{30}}{10}$,求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示的几何体,则该几何体的俯视图是选项图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四个命题中,正确的是(  )
A.奇函数的图象一定过原点B.y=x2+1(-4<x≤4)是偶函数
C.y=|x+1|-|x-1|是奇函数D.y=x+1是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A=(-∞,-1)∪(3,+∞),B={x|x2-4x+a=0,a∈R}.
(Ⅰ)若A∩B≠∅,求a的取值范围;
(Ⅱ)若A∩B=B,求a的取值范围.

查看答案和解析>>

同步练习册答案