精英家教网 > 高中数学 > 题目详情
6.已知f($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)=x+$\frac{1}{x}$-2,则f(x)=x2-4(x≥2).

分析 利用换元法,即可求得函数的解析式.

解答 解:设t=$\sqrt{x}$+$\frac{1}{\sqrt{x}}$(t≥2),则x+$\frac{1}{x}$=t2-2,
∴f(t)=t2-4(t≥2),
∴f(x)=x2-4(x≥2),
故答案为:x2-4(x≥2).

点评 本题考查函数的解析式,考查换元法的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,从A村去B村有3条道路,从B村去C村有2条道路.
(1)从A村经B村到C村有多少种不同的行走路线?
(2)某人从中任选一条路线,选中“先经A-B中路,再经B-C南路”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A、B、C、D在同-个球面上,DA⊥平面ABC,DA=AB=AC=$\sqrt{3}$,∠BAC=60°,则球的半径是$\frac{\sqrt{7}}{2}$.若∠BAC=120°,结果又如何?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=g(x)的单调增区间是[-2,4],其值域是[-2,4],则函数y=g(x)-2的单调递增区间是[-2,4],它的值域是[-4,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=f(x),x∈[-1,a](a>-1)是奇函数,则a等于(  )
A.-1B.0C.1D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.填空题:
(1)A={1,3,7},B={1,4,6},则A∩B={1}.
(2){x|x>-1}∩{x|≤2}={x|-1<x≤2}.
(3)A={x|-2<x<3},B={x|x>2},A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=f(x)的定义域为[-4,6],且在区间[-4,-2]上递减,在区间(-2,6]上递增,且f(-4)<f(6),则函数f(x)的最小值是f(-2),最大值是f(6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆锥的底面半径为3,高是4,在这个圆锥内部有一个内切球,则此内切球的半径为(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)在它的定义域(0,+∞)内为增函数,且对任意正数x,都有f(f(x)-lnx)=1,e是自然对数的底数,则f(e)的值等于(  )
A.1B.2C.eD.e+1

查看答案和解析>>

同步练习册答案