精英家教网 > 高中数学 > 题目详情
18.某电视台组织部分记者,用“10分制”随机调查某社区居民的幸福指数,现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数的得分(以小数点的前一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福指数不低于9分,则称该人的幸福指数为“极幸福”;若幸福指数不高于8分,则称该人的幸福指数为“不够幸福”.现从这16人中幸福指数为“极幸福”和“不够幸福”的人中任意选取2人,
(i) 请列出所有选出的结果;
(ii) 求选出的两人的幸福指数均为“极幸福”的概率.

分析 (1)由茎叶图能求出众数和中位数.
(2)(i)现从这16人中幸福指数为“极幸福”和“不够幸福”的人中任意选取2人,幸福指数为“不够幸福”的两人设为A,B,幸福指数为“极幸福”的4人设为a,b,c,d,利用列举法能求出所有结果.
(ii)利用列兴举法求出选出的两人的幸福指数均为“极幸福”的基本事件个数,由此能求出选出的两人的幸福指数均为“极幸福”的概率.

解答 解:(1)由茎叶图得众数是:8.6,
中位数是:$\frac{8.7+8.8}{2}$=8.75.
(2)(i)现从这16人中幸福指数为“极幸福”和“不够幸福”的人中任意选取2人,
幸福指数为“不够幸福”的两人设为A,B,幸福指数为“极幸福”的4人设为a,b,c,d,
所有结果为:(A,B),(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),
(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共有15个.
(ii)选出的两人的幸福指数均为“极幸福”的基本事件有:
(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共有6个,
∴选出的两人的幸福指数均为“极幸福”的概率p=$\frac{6}{15}=\frac{2}{5}$.

点评 本题考查茎叶图的求法,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若三点A(1,-5),B(a,-2),C(-2,-1)共线,则实数a的值为-$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数 y=x2+x(-1≤x≤3}的值域是(  )
A.[0,12]B.[-$\frac{1}{4}$,12]C.[-$\frac{1}{2}$,12]D.[$\frac{3}{4}$,12]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a,b,c∈R,且ac=b2,a+b+c=3,则b的取值范围是(  )
A.[0,1]B.[-3,-1]C.[-1,1]D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.以$A(-\sqrt{3},0)$为圆心,4为半径作圆,$B(\sqrt{3},0)$,C为圆上任意一点,分别连接AC,BC,过BC的中点N作BC的垂线,交AC于点M,当点C在圆上运动时,
(1)求M点的轨迹方程,并说明它是何种曲线;
(2)求直线y=kx+1截(1)所得曲线弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为(  )(参考数据:sin15°=0.2588,sin7.5°=0.1305)
A.22B.23C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列说法:
①若一个命题的否命题是真命题,则这个命题不一定是真命题;
②若一个命题的逆否命题是真命题,则这个命题是真命题;
③若一个命题的逆命题是真命题,则这个命题不一定是真命题;
④若一个命题的逆命题和否命题都是真命题,则这个命题一定是真命题;
其中正确的说法①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线L1:x+ay+6=0与直线L2:(a-2)x+3y+2a=0互相平行,则a的值为(  )
A.-1或3B.1或3C.-1D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设直线l经过椭圆$\frac{x^2}{4}+{y^2}=1$的右焦点且倾斜角为45°,若直线l与椭圆相交于A,B两点,则|AB|=(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

同步练习册答案