精英家教网 > 高中数学 > 题目详情

【题目】下面四个命题:

在定义域上单调递增;

②若锐角满足,则

是定义在上的偶函数,且在上是增函数,若,则

④函数的一个对称中心是

其中真命题的序号为______.

【答案】②③④

【解析】

由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案.

解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;

若锐角满足,即,即,则,故②为真命题;

是定义在上的偶函数,且在上是增函数,则函数在上为减函数,

,则,则,故③为真命题;

由函数则当,故可得是函数的一个对称中心,故④为真命题;

故答案为:②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:

  

2013

2014

2015

2016

2017

时间代号t

1

2

3

4

5

储蓄存款y/千亿元

5

6

7

8

10

(1)y关于t的线性回归方程t+;

(2)用所求回归方程预测该地区2018(t=6)的人民币储蓄存款.

:回归方程t+,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】()某电视台举办的闯关节目共有五关,只有通过五关才能获得奖金,规定前三关若有失败即结束,后两关若有失败再给一次从失败的关开始继续向前闯的机会(后两关总共只有一次机会),已知某人前三关每关通过的概率都是,后两关每关通过的概率都是.

(1)求该人获得奖金的概率;

(2)设该人通过的关数为X,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C

若圆C的切线lx轴和y轴上的截距相等,且截距不为零,求切线l的方程;

已知点为直线上一点,由点P向圆C引一条切线,切点为M,若,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题pxR,2mx2+mx-<0,命题q:2m+1>1.若“pq”为假,“pq”为真,则实数m的取值范围是(  )

A. (-3,-1)∪[0,+∞) B. (-3,-1]∪[0,+∞)

C. (-3,-1)∪(0,+∞) D. (-3,-1]∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次高中学科知识竞赛中,对4000名考生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为60分以下视为不及格,若同一组中数据用该组区间中间值作代表值,则下列说法中正确的是(

A.成绩在的考生人数最多B.不及格的考生人数为1000

C.考生竞赛成绩的平均分约为70D.考生竞赛成绩的中位数为75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点AB的坐标分别为(-2,0),(2,0)直线AMBM相交于点M,且它们的斜率之积是-

(1)求点M的轨迹E的方程;

(2)设直线ly=kxE交于CD两点,F1(-1,0),F2(1,0),若E上存在点P,使得,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是以为直径的圆上两点,上一点,且,将圆沿直径折起,使点在平面的射影上,已知.

1)求证:平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解全校高中学生五一小长假参加实践活动的情况,抽查了100名学生,统计他们假期参加实践活动的时间,绘成的频率分布直方图如图所示.

1)估计这100名学生参加实践活动时间的众数、中位数和平均数.

2)估计这100名学生参加实践活动时间的上四分位数.

查看答案和解析>>

同步练习册答案