精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x2+2x+1的最小值是(  )
A.0B.1C.2D.3

分析 先分析函数的单调性,进而可得函数的最值.

解答 解:函数f(x)=x2+2x+1的图象是开口朝上,且以直线x=-1为对称轴的抛物线,
故当x=-1时,函数取最小值0,
故选:A

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知△ABC的顶点A(1,3),M(2,2)是AB的中点,BC边上的高AD所在直线方程为4x+y-7=0,AC边上的高BE所在直线方程为2x+3y-9=0.
求:(1)求顶点B的坐标及边BC所在的直线方程;
(2)求AB边上的中线CM所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各题:
$(1){0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{[{(-2)^3}]^{-\frac{4}{3}}}+{16^{-0.75}}+{0.01^{\frac{1}{2}}}$
(2)2lg$\frac{5}{3}-lg\frac{7}{4}+2lg3+\frac{1}{2}$lg49.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=2x3-mx+1在区间[1,2]上单调,则实数m的取值范围为(-∞,6]∪[24,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)设a<0,角α的终边经过点P(-3a,4a),求sinα+2cosα的值;
(2)已知tanβ=2,求sin2β+2sinβcosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设向量$\overrightarrow{a}$=(2,x-1),$\overrightarrow{b}$=(x+1,4),则“x=3”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的(  )
A.既不充分也不必要条件B.必要而不充分条件
C.充分必要条件D.充分而不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知连续型随机变量X的概率密度为f(x)=$\left\{\begin{array}{l}{x\\;(0≤x<1)}\\{2-x\\;(1≤x<2)}\\{0\\;(其他)}\end{array}\right.$.求X的分布函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知复数z1=x+8i,z2=3+2yi,z=x+yi(x、y∈R),若z1=z2
(1)求|z|;
(2)若z是关于x的方程x2-mx+n=0(m、n∈R)的一个根,求m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数y=sin2x的图象向右平移$\frac{π}{2}$个单位长度,所得图象对应的函数是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

同步练习册答案