精英家教网 > 高中数学 > 题目详情
a的值,使两直线xay=2a+2和axy=a+1平行.

解:由=,得a2=1,a=±1.

a=1时,两直线方程分别为xy=4和xy=2,两直线平行;

a=-1时,两直线的方程分别为xy=0和xy=0,两直线重合.

综上所述,a=1为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的范围;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+
12a2+1
对称,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

离心率为
2
2
的椭圆C1的长轴两端点分别是双曲线C2x2-
y2
4
=1
的两焦点.
(1)求椭圆C1的方程;
(2)直线y=x+m与椭圆C1交于A,B两点,与双曲线C2两条渐近线交于P,Q两点,且P,Q在A,B之间,使|AP|,|PQ|,|QB|成等差数列,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选考题,请考生任选2题作答,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换曲线x2+4xy+2y2=1在二阶矩阵M=
1a
b1
的作用下变换为曲线x2-2y2=1,求M的逆矩阵M-1=
1-2
0  1
1-2
0  1

(2)选修4-4:坐标系与参数方程在曲线C1
x=1+cosθ
y=sinθ
(θ为参数),在曲线C1求一点,使它到直线C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t为参数)的距离最小,最小距离
1
1

(3)选修4-5:不等式选讲设函数f(x)=
|x+1|+|x-2|+a
.试求a的取值范围
{a|a≥-3}
{a|a≥-3}

查看答案和解析>>

科目:高中数学 来源:2004年高考教材全程总复习试卷·数学 题型:044

函数f(x)的定义域为D,如果存在x0∈D,使f(x0)=x0,则称点(x0,x0)为函数f(x)图象上的不动点.

(1)试证明:若定义在R上的奇函数f(x)的图象上存在有限个不动点,则不动点有奇数个.

(2)若函数f(x)=的图象上有两个关于直线x+y=3对称的不动点,求a的值.

查看答案和解析>>

同步练习册答案