精英家教网 > 高中数学 > 题目详情
已知双曲线x2-
y2
m
=1(m>0)的离心率是2,则m=
 
,以该双曲线的右焦点为圆心且与其渐近线相切的圆的方程是
 
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:求出双曲线的a,b,c,由离心率公式,计算即可得到m,求出双曲线 都将揭晓方程,再由直线和圆相切的条件可得d=r,运用点到直线的距离公式,计算即可得到.
解答: 解:双曲线x2-
y2
m
=1(m>0)的a=1,b=
m

c=
1+m
,则e=
c
a
=
1+m
=2,解得,m=3;
则有双曲线的方程为x2-
y2
3
=1,
其右焦点为(2,0),渐近线方程为y=±
3
x,
由题意可得,d=r=
|2
3
|
1+3
=
3

则所求圆的方程为(x-2)2+y2=3.
故答案为:3,(x-2)2+y2=3
点评:本题考查双曲线的方程和性质,考查直线和圆相切的条件,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

两直线3x+y-
3
2
m=0与6x+my+1=0平行,则它们之间的距离为(  )
A、4
B、
2
13
13
C、
5
26
13
D、
7
20
10

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:实数x满足x2-4ax+3a2<0,命题q:实数x满足
-2≤x-1≤2
x+3
x-2
≥0
,若a=1,且p∧q为真,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C上的点到两定点A(-4,0)、B(-1,0)的距离之比为2,且曲线C上存在两点关于直线y=k(x-1)-1对称,则k等于(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为2
6
,则三棱锥P-ABC的内切球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:2x2-y2=2,若过点P(1,2)直线l与C没有公共点,则l斜率的取值范围为(  )
A、(-∞,-
2
B、(-
2
2
C、(
2
3
2
D、(
3
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2=
1
2
y在第一象限内图象上一点(ai,2ai2)处的切线与x轴交点的横坐标记为ai+1,其中i∈N*,若a2=32,则a2+a4+a6等于(  )
A、64B、42C、32D、21

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,若“非p”是假命题,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当n=4时,执行如图所示的程序框图,输出的S值为(  )
A、6B、8C、14D、30

查看答案和解析>>

同步练习册答案