精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xoy中,曲线C1的参数方程为 ,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=4
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.

【答案】
(1)解:由 得cosα= ,sinα=y.∴曲线C1的普通方程是

,∴ρsinθ+ρcosθ=8.即x+y﹣8=0.∴曲线C2的直角坐标方程时x+y﹣8=0.


(2)解:设P点坐标( ,sinα),∴P到直线C2的距离d= =

∴当sin(α+ )=1时,d取得最小值 =3


【解析】(1)利用cos2α+sin2α=1消参数得到C1的普通方程,将极坐标方程左侧展开即可得到直角坐标方程;(2)利用C1的参数方程求出P到C2的距离,根据三角函数的性质求出距离的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且当时,.记.给出下列关于函数的说法:①当时,②函数为奇函数;③函数上为增函数;④函数的最小值为,无最大值. 其中正确的是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与正三角形的边长均为,它们所在平面互相垂直, 平面,且

)求证:平面平面

)若,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是等比数列,公比为q(q>0且q≠1),4a1 , 3a2 , 2a3成等差数列,且它的前4项和为S4=15.
(1)求{an}通项公式;
(2)令bn=an+2n(n=1,2,3…),求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆E: + =1(a>b>0)的焦点到直线x﹣3y=0的距离为 ,离心率为 ,抛物线G:y2=2px(p>0)的焦点与椭圆E的焦点重合;斜率为k的直线l过G的焦点与E交于A,B,与G交于C,D.
(1)求椭圆E及抛物线G的方程;
(2)是否存在学常数λ,使 为常数,若存在,求λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面 中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁, 岁年龄段人数中,“时尚族”人数分别占本组人数的.

(1)求岁与岁年龄段“时尚族”的人数;

(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若 轴垂直,且.

(1)求椭圆方程;

(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

同步练习册答案