ÒÑÖªÖ±ÏßlÓëÍÖÔ²C£º
x2
3
+
y2
2
=1
½»ÓÚP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©Á½²»Í¬µã£¬ÇÒ¡÷OPQµÄÃæ»ýS¡÷OPQ=
6
2
£¬ÆäÖÐOΪ×ø±êÔ­µã£®
£¨¢ñ£©Ö¤Ã÷x12+x22ºÍy12+y22¾ùΪ¶¨Öµ£»
£¨¢ò£©ÉèÏ߶ÎPQµÄÖеãΪM£¬Çó|OM|•|PQ|µÄ×î´óÖµ£»
£¨¢ó£©ÍÖÔ²CÉÏÊÇ·ñ´æÔÚµãD£¬E£¬G£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
6
2
£¿Èô´æÔÚ£¬Åжϡ÷DEGµÄÐÎ×´£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÒÑÖªÉè³öÖ±ÏßlµÄ·½³Ì£¬ÀûÓÃÏÒ³¤¹«Ê½Çó³ö|PQ|µÄ³¤£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽÇóµãOµ½Ö±ÏßlµÄ¾àÀ룬¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½£¬¼´¿ÉÇóµÃx12+x22ºÍy12+y22¾ùΪ¶¨Öµ£»
£¨¢ò£©ÓÉ£¨I£©¿ÉÇóÏ߶ÎPQµÄÖеãΪM£¬´úÈë|OM|•|PQ|²¢ÀûÓûù±¾²»µÈʽÇó×îÖµ£»£¨¢ó£©¼ÙÉè´æÔÚD£¨u£¬v£©£¬E£¨x1£¬y1£©£¬G£¨x2£¬y2£©£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
6
2

ÓÉ£¨¢ñ£©µÃu2+x12=3£¬u2+x22=3£¬x12+x22=3£»v2+y12=2£¬v2+y22=2£¬y12+y22=2£¬´Ó¶øÇóµÃµãD£¬E£¬G£¬µÄ×ø±ê£¬¿ÉÒÔÇó³öÖ±ÏßDE¡¢DG¡¢EGµÄ·½³Ì£¬´Ó¶øµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨¢ñ£©1¡ãµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬P£¬QÁ½µã¹ØÓÚxÖá¶Ô³Æ£¬
ËùÒÔx1=x2£¬y1=-y2£¬
¡ßP£¨x1£¬y1£©ÔÚÍÖÔ²ÉÏ£¬
¡à
x12
3
+
y12
2
=1
     ¢Ù
ÓÖ¡ßS¡÷OPQ=
6
2
£¬
¡à|x1||y1|=
6
2
      ¢Ú
ÓÉ¢Ù¢ÚµÃ|x1|=
6
2
£¬|y1|=1£®´Ëʱx12+x22=3£¬y12+y22=2£»
2¡ãµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÊÇÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬½«Æä´úÈë
x2
3
+
y2
2
=1
µÃ
£¨3k2+2£©x2+6kmx+3£¨m2-2£©=0£¬¡÷=36k2m2-12£¨3k2+2£©£¨m2-2£©£¾0
¼´3k2+2£¾m2£¬
ÓÖx1+x2=-
6km
3k2+2
£¬x1•x2=
3(m2- 2)
3k2+2
£¬
¡à|PQ|=
1+k2
(x1+x2)2-4x1x2
=
1+k2
2
6
3k2+2-m2
3k2+2
£¬
¡ßµãOµ½Ö±ÏßlµÄ¾àÀëΪd=
|m|
1+k2
£¬
¡àS¡÷OPQ=
1
2
1+k2
2
6
3k2+2-m2
3k2+2
|m|
1+k2
=
6
3k2+2-m2
|m|
3k2+2
£¬
ÓÖS¡÷OPQ=
6
2
£¬
ÕûÀíµÃ3k2+2=2m2£¬´Ëʱx12+x22=£¨x1+x2£©2-2x1x2=£¨-
6km
3k2+2
£©2-2
3(m2- 2)
3k2+2
=3£¬
y12+y22=
2
3
£¨3-x12£©+
2
3
£¨3-x22£©=4-
2
3
£¨x12+x22£©=2£»
×ÛÉÏËùÊöx12+x22=3£¬y12+y22=2£®½áÂÛ³ÉÁ¢£®

£¨¢ò£©1¡ãµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬ÓÉ£¨¢ñ£©Öª
|OM|=|x1|=
6
2
£¬|PQ|=2|y1|=2£¬
Òò´Ë|OM|•|PQ|=
6
£®
2¡ãµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÓÉ£¨¢ñ£©Öª 
x1+x2
2
=-
3k
2m
£¬
y1+y2
2
=k
x1+x2
2
+m=
-3k2+2m2
2m
=
1
m

|OM|2=£¨
x1+x2
2
£©2+£¨
y1+y2
2
£©2=
9k2
4m2
+
1
m2
=
6m2-2
4m2
=
1
2
(3-
1
m2
)
£¬
|PQ|2=£¨1+k2£©
24(3k2+2-m2)
2+3k2)2 
=
2(2m2-1)
m2
=2£¨2+
1
m2
£©£¬
ËùÒÔ|OM|2|PQ|2=
1
2
(3-
1
m2
)
¡Á2¡Á(2+
1
m2
)
=£¨3-
1
m2
£©£¨2+
1
m2
£©

¡Ü (
3-
1
m2
+ 2+
1
m2
2
)
2
=
25
4
£®
|OM|•|PQ|¡Ü
5
2
£®µ±ÇÒ½öµ±3-
1
m2
=2+
1
m2
£¬
¼´m=¡À
2
ʱ£¬µÈºÅ³ÉÁ¢£®
×ÛºÏ1¡ã2¡ãµÃ|OM|•|PQ|µÄ×î´óֵΪ
5
2
£»

£¨¢ó£©ÍÖÔ²CÉϲ»´æÔÚÈýµãD£¬E£¬G£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
6
2
£¬
Ö¤Ã÷£º¼ÙÉè´æÔÚD£¨u£¬v£©£¬E£¨x1£¬y1£©£¬G£¨x2£¬y2£©£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
6
2

ÓÉ£¨¢ñ£©µÃ
u2+x12=3£¬u2+x22=3£¬x12+x22=3£»v2+y12=2£¬v2+y22=2£¬y12+y22=2
½âµÃu2=x12=x22=
3
2
£»v2=y12=y22=1£®
Òò´Ëu£¬x1£¬x2Ö»ÄÜ´Ó¡À
6
2
ÖÐÑ¡È¡£¬
v£¬y1£¬y2Ö»ÄÜ´Ó¡À1ÖÐÑ¡È¡£¬
Òò´ËµãD£¬E£¬G£¬Ö»ÄÜÔÚ£¨¡À
6
2
£¬¡À1£©ÕâËĵãÖÐÑ¡È¡Èý¸ö²»Í¬µã£¬
¶øÕâÈýµãµÄÁ½Á½Á¬ÏßÖбØÓÐÒ»Ìõ¹ýÔ­µã£¬ÓëS¡÷ODE=S¡÷ODG=S¡÷OEG=
6
2
ì¶Ü£®
ËùÒÔÍÖÔ²CÉϲ»´æÔÚÂú×ãÌõ¼þµÄÈýµãD£¬E£¬G£®
µãÆÀ£º´ËÌâÊǸöÄÑÌ⣮±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬ÏÒ³¤¹«Ê½ºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬ÊÇÒ»µÀ×ÛºÏÐÔµÄÊÔÌ⣬¿¼²éÁËѧÉú×ÛºÏÔËÓÃ֪ʶ½â¾öÎÊÌâµÄÄÜÁ¦£®ÆäÖÐÎÊÌ⣨III£©ÊÇÒ»¸ö¿ª·ÅÐÔÎÊÌ⣬¿¼²éÁËͬѧÃǹ۲졢ÍÆÀíÒÔ¼°´´ÔìÐԵطÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÀëÐÄÂÊΪ
2
2
µÄÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©¹ýµãM£¨
6
£¬1£©£¬OΪ×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÈôÖ±ÏßlÊÇÔ²O£ºx2+y2=
8
3
µÄÒ»ÌõÇÐÏߣ¬ÊÔÖ¤Ã÷¡ÏAOB=
¦Ð
2
£®ËüµÄÄæÃüÌâ³ÉÁ¢Âð£¿Èô³ÉÁ¢£¬Çë¸ø³öÖ¤Ã÷£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÀëÐÄÂÊΪ
2
2
µÄÍÖÔ²C£º
x2
a2
+
y2
b2
=1  (a£¾b£¾0)
¹ýµãM(
6
£¬1)
£¬OΪ×ø±êÔ­µã
£¨1£©ÇóÍÖÔ²·½³Ì
£¨2£©ÒÑÖªÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÈôÖ±ÏßlÊÇÔ²O£ºx2+y2=
8
3
µÄÒ»ÌõÇÐÏߣ¬ÇóÖ¤£º¡ÏAOB=
¦Ð
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012Ä꼪ÁÖÊ¡¸ß¿¼Êýѧ·ÂÕæÄ£ÄâÊÔ¾í3£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÀëÐÄÂÊΪµÄÍÖÔ²C£º+=1£¨a£¾b£¾0£©¹ýµãM£¨£¬1£©£¬OΪ×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÈôÖ±ÏßlÊÇÔ²O£ºx2+y2=µÄÒ»ÌõÇÐÏߣ¬ÊÔÖ¤Ã÷¡ÏAOB=£®ËüµÄÄæÃüÌâ³ÉÁ¢Âð£¿Èô³ÉÁ¢£¬Çë¸ø³öÖ¤Ã÷£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äêɽ¶«Ê¡¸ß¿¼ÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÖ±ÏßlÓëÍÖÔ²C£º½»ÓÚP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©Á½²»Í¬µã£¬ÇÒ¡÷OPQµÄÃæ»ýS¡÷OPQ=£¬ÆäÖÐOΪ×ø±êÔ­µã£®
£¨¢ñ£©Ö¤Ã÷x12+x22ºÍy12+y22¾ùΪ¶¨Öµ£»
£¨¢ò£©ÉèÏ߶ÎPQµÄÖеãΪM£¬Çó|OM|•|PQ|µÄ×î´óÖµ£»
£¨¢ó£©ÍÖÔ²CÉÏÊÇ·ñ´æÔÚµãD£¬E£¬G£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=£¿Èô´æÔÚ£¬Åжϡ÷DEGµÄÐÎ×´£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸