精英家教网 > 高中数学 > 题目详情
设f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上是减函数.若f(m)>f(2),则实数m的取值范围是
 
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.
解答: 解:∵f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上是减函数,
∴不等式f(m)>f(2),等价为f(|m|)>f(2),
即|m|<2,
解得-2<m<2,
故答案为:(-2,2);
点评:本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行等价转化是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c.
(I)设
m
=(a,cosB),
n
=(b,cosA),当a≠b且
m
n
时,判断△ABC的形状;
(Ⅱ)若4sin2
A+B
2
-cos2C=
7
2
,且c=
7
,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D是BC的中点,则
AD
=(  )
A、
1
2
(
AB
+
AC
)
B、
1
2
(
AB
-
AC
)
C、
1
2
(
AB
+
BC
)
D、
1
2
(
AB
-
BC
)

查看答案和解析>>

科目:高中数学 来源: 题型:

cos42°•cos78°+sin42°•cos168°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an},满足a4=2a3+3a2,若存在两项am,an使得
aman
=9a1
,则
4
m
+
1
n
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
,g(x)=
x
4x-a
.函数g(x)在(1,+∞)上单调递减.
(Ⅰ)求实数a的取值范围;
(Ⅱ)设函数h(x)=f(x)•g(x),x∈[1,4],求函数y=h(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知无穷数列{an}是各项均为正数的等差数列,则有(  )
A、
a2
a3
a3
a4
B、
a2
a3
a3
a4
C、
a2
a3
a3
a4
D、
a2
a3
a3
a4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列三个条件:
①对于任意的x∈R都有f(x+6)=f(x);
②对于任意的0≤x1<x2≤3都有f(x1)<f(x2);
③函数y=f(x+3)的图象关于y轴对称.
则下列结论正确的是(  )
A、f(0.5)>f(13)>f(10)
B、f(10)>f(13)<f(0.5)
C、f(0.5)<f(13)<f(10)
D、f(13)<f(0.5)<f(10)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax+1在(-1,1)上是增函数,函数y=-x2+2ax在[1,2]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案