精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,若a1=1,Sn-
1
2
an+1
=0(n∈N*),则{an}的通项公式为
 
考点:数列的求和
专题:等差数列与等比数列
分析:当n≥2时,an=Sn-Sn-1,利用等比数列的通项公式即可得出.
解答: 解:当n≥2时,an=Sn-Sn-1=
1
2
an+1-
1
2
an
化为an+1=3an.a1-
1
2
a2=0,解得a2=2.
∴当n≥2时,数列{an}为等比数列,
an=2×3n-2
∴{an}的通项公式为an=
1n=1
2•3n-2n≥2

故答案为:an=
1n=1
2•3n-2n≥2
点评:本题考查了递推式的应用、等比数列的通项公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=
g(x),x>0
f(x),x<0
是奇函数,当x>0时,其对应的图象如图所示,则f(x)等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个单位向量
a
b
的夹角为30°,
c
=t
a
+
b
d
=
a
-t
b
.若
c
d
=0,则正实数t=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不为零的数列{an}的前n项和为Sn,且满足Sn=a1(an-1)
(1)求数列{an}的通项公式;
(2)设数列{bn}满足anbn=log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-2x,x≥0
-x2-2x,x<0
,则它们的单调增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过5万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型y=f(x)制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;
(Ⅱ)现有两个奖励函数模型:(1)y=
1
20
x+1;(2)y=log2x-2.试分析这两个函数模型是否符合公司要求.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=4x上的一点P到y轴的距离是4,则点P到该抛物线焦点的距离为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的内角,满足sinA,sinC,sinB成等差数列,则cosC的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
为平面向量,若
a
+
b
a
的夹角为
π
3
a
+
b
b
的夹角为
π
4
,则
|
a
|
|
b
|
=(  )
A、
3
3
B、
6
4
C、
5
3
D、
6
3

查看答案和解析>>

同步练习册答案