精英家教网 > 高中数学 > 题目详情

【题目】关于函数 ,看下面四个结论( ) ①f(x)是奇函数;②当x>2007时, 恒成立;③f(x)的最大值是 ;④f(x)的最小值是 .其中正确结论的个数为:
A.1个
B.2个
C.3个
D.4个

【答案】A
【解析】解:y=f(x)的定义域为x∈R,且f(﹣x)=f(x),则函数f(x)为偶函数,因此结论①错. 对于结论②,取特殊值当x=1000π时,x>2007,sin21000π=0,且( 1000π>0
∴f(1000π)= ﹣( 1000π ,因此结论②错.
对于结论③,f(x)= ﹣( |x|+ =1﹣ cos2x﹣( |x| , ﹣1≤cos2x≤1,
∴﹣ ≤1﹣cos2x≤ ,( |x|>0
故1﹣ cos2x﹣( |x| ,即结论③错.
对于结论④,cos2x,( |x|在x=0时同时取得最大值,
所以f(x)=1﹣ cos2x﹣( |x|在x=0时可取得最小值﹣ ,即结论④是正确的.
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】海关对同时从ABC三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.

地区

A

B

C

数量

50

150

100

(1)求这6件样品中来自ABC各地区商品的数量;

(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意的实数满足: ,且当﹣3≤x<﹣1时,f(x)=﹣(x+2)2 , 当﹣1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2015)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市根据地理位置划分成了南北两区,为调查该市的一种经济作物(下简称 作物)的生长状况,用简单随机抽样方法从该市调查了 500 处 作物种植点,其生长状况如表:

其中生长指数的含义是:2 代表“生长良好”,1 代表“生长基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.

(1)估计该市空气质量差的作物种植点中,不绝收的种植点所占的比例;

(2)能否有 99%的把握认为“该市作物的种植点是否绝收与所在地域有关”?

(3)根据(2)的结论,能否提供更好的调查方法来估计该市作物的种植点中,绝收种植点的比例?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次大型运动会的组委会为了搞好接待工作,招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成下面2×2列联表:

喜爱运动

不喜爱运动

总计

10

16

6

14

总计

30


(2)能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关系?
(3)已知喜欢运动的女志愿者中恰有4人会外语,如果从中抽取2人负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2= ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.40

0.25

0.10

0.010

k0

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若曲线在点处的切线经过点,求实数的值;

若函数在区间上单调,求实数的取值范围;

,若对 ,使得成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1中.

(1)求证:AC⊥平面B1BDD1
(2)求三棱锥B﹣ACB1体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与直线平行.

(1)求的值;

(2)若函数在区间上不单调,求实数的取值范围;

(3)求证:对任意时,恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求曲线在点处的切线方程;

2)当时,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案