精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程为

1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;

2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

【答案】(1)点P在直线l上;(2.

【解析】试题分析:(1)消去曲线参数方程中的参数,得到曲线普通方程,根据公式,把点的坐标化为直角坐标方程,即可判断点与直线的关系;(2)设,由点到直线的距离公式可得距离的表达式,通过三角恒等变换化为正弦型函数在给定区间上的最值来求解.

试题解析:(1曲线C的参数方程为

曲线C的普通方程是

P的极坐标为

P的普通坐标为(4cos4sin),即(04),

把(04)代入直线lx﹣y+4=0

0﹣4+4=0,成立,

故点P在直线l上.

2Q在曲线C上,(0°≤α360°

到直线lx﹣y+4=0的距离:

=,(0°≤α360°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,点轴上,点轴上,且.

(1)当点轴上运动时,求点的轨迹的方程;

(2)设点是轨迹上的动点,点轴上,圆内切于,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市需对某环城快速车道进行限速,为了调研该道路车速情况,于某个时段随机对辆车的速度进行取样,测量的车速制成如下条形图:

经计算:样本的平均值,标准差,以频率值作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于或车速大于是需矫正速度.

(1)从该快速车道上所有车辆中任取个,求该车辆是需矫正速度的概率;

(2)从样本中任取个车辆,求这个车辆均是需矫正速度的概率;

(3)从该快速车道上所有车辆中任取个,记其中是需矫正速度的个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,P是正方形ABCD对角线的交点,GPB的中点.

(1)根据三视图,画出该几何体的直观图.

(2)在直观图中,①证明:PD∥平面AGC;

②证明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求在区间上最大值和最小值;

(2)如果方程有三个不相等的实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,下图为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.

(1)求出

(2)利用合情推理的“归纳推理思想”归纳出的关系式,

(3)根据你得到的关系式求的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品上市30天内每件的销售价格元与时间天函数关系是

该商品的日销售量件与时间天函数关系是

.(1)求该商品上市第20天的日销售金额;

(2)求这个商品的日销售金额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盐化某厂决定采用以下方式对某块盐池进行开采:每天开采的量比上一天减少,10天后总量变为原来的一半,为了维持生态平衡,剩余总量至少要保留原来的,已知到今天为止,剩余的总量是原来的

(1)求的值;

(2)到今天为止,工厂已经开采了几天?

(3)今后最多还能再开采多少天?

查看答案和解析>>

同步练习册答案